(经典)初中数学学习方法
在日常的学习、工作、生活中,大家都在努力,勤奋的学习,正确的学习方法,能够让我们学习事半功倍!想要找到正确的学习方法?下面是小编为大家整理的初中数学学习方法,希望对大家有所帮助。

初中数学学习方法1
数学学习方法指导的形式
1.讲授式。它包括课程式和讲座式。课程式是在初一新生入学的前几周内安排几次向学生介绍如何学习数学,提出数学学习常规要求的课。讲座式可分专题进行,可每月搞一至二次,如介绍“怎样听课”、“如何学习概念”、“解题思维训练”等。
2.交流式。让学生相互交流,介绍各自的学习方法。可请本班、本年级或高年级的'学生介绍数学学习方法、体会、经验。这种方式学生容易接受,气氛活跃,不求大而全,只求有一得,使交流真正起到相互学习促进的作用。
3.辅导式。主要是针对个别学生的指导和咨询。任何一种学习方法都不是人人都适合的,这时就应该深入了解学生学习基础,研究学生认识水平的差异,对不同学生的学习方法作不同的指导或咨询。尤其是对后进生更应特别关注。许多后进生由于没有一个良好的学习习惯和学习方法,一般指导对他们作用甚微,因此必须对他们采取个别辅导,既辅导知识也辅导学法。因材施教,帮助每一个学生真正地去学习,真正地会学习,真正地学习好,这是面向全体学生,全面提高学生素质,全面提高教学质量的关键。
数学学习方法的指导是长期艰巨的任务,初一年级是中学的起始阶段,抓好学法指导对今后的学习会起到至关重要的作用。
初中数学学习方法2
一、初中生数学学习方法的现状与分析
通过近三年的课堂教学实践,初中生数学学习的基本方法可归结为:读、听、思、说、记、写、纠、用,并存在一定的缺陷和不足。主要表现在:
1.诸多学生不会阅读数学课本内容,总以为阅读课本就是看结论,呆读硬背,不仅没读懂读透,而且应变能力和实际应用能力都较差,严重制约了自学能力的发展。
2.学生不能充分认识到老师讲课的重要作用,听课时抓不着重点,导致顾此失彼,精力分散,听课效率下降,效果极其底下。
3.学生思考问题常常受思维定势的干扰和影响,不善于分析转化和进一步思考,其思路狭窄、滞后,甚至受阻,挫伤其学习的积极性,不利于他们的学习。
4.口头表达能力差。主要表现在解题时会却无法表达。回答老师提问时,口头表达的内容不精炼,不生动,欠准确,或答非所问。
5.识记知识多是机械记忆,理解记忆少,满足于记住结论,而不立足于去理解、概括、联想,导致认知网络不能完整建立。
6.书写格式混乱,条理不清楚,作图不规范,缺乏应有的严谨性和规范性。尤其是几何问题更为突出。
7.学生在作业或测试后,对出现的错误,不能及时纠正,找不出错误的原因及矫正的方法。
8.由于学生对知识的记忆是机械的,重知识结论,轻知识发生的过程及来源,导致不能用所学知识去解决实际问题,应用能力差。
二、指导学生数学学习学法的.对策
针对上述存在的诸多问题,作为教师又如何去指导学生的学习呢?本人认为应从以下几个方面去培养学生的“读、听、思、说、记、写、纠、用”的能力。
1.重课本内容读的指导
南宋朱熹说过:“幼时读书,背至滚瓜烂熟,不甚了了,成年逐渐感悟,回思意味深长。”这表明一个人学习,读和悟,读是第一位的。因此要认真指导学生阅读数学课本,从课本的各个方面去去深入理解内容。一是读标题,要求学生细细体会标题,能提纲挈领地抓住教材的主要内容;二是读例题,在预习时应要求学生带着问题读例题,并初步理解解题方法;三是读插图,它们可使学生更形象、具体、准确地理解文字的内容;四是读算式,按算式各部分的原理读,按算式所表示的意义读,这样可以弄清算式的概念和意义;五是读结语,要求学生对结语逐字逐句地理解分析,以便准确地把握。
同时读书时要抓好三点:一是粗读,即边读边圈、点、勾、画,大体弄懂教材内容,对理解有困难的地方作记号;二是精读,即在教师讲解的基础上细嚼课文,把握重要的数学概念、公式、法则、思想及方法;三是研读,即当每一章节内容学完后,整理学过的知识,弄清体系,小结归纳要点,形成知识网络。
2.抓教学过程听的指导
数学教学中指导学生听课,先从培养学习兴趣入手来集中学生的注意力,使其激活原有的认识结构,打开“听门”,专心听讲。其次,要指导学生会听课,主要从以下几方面去努力:一是注意听教师每一节课开始所讲的教学内容、重点和学习要求;二是注意听教师在讲解例题时关键读粉的提示和处理;三是注意听教师对概念要点的剖析和概念体系的串联;四是注意听教师每一节课的小结和对某些较难习题及例题的提示等。
3.注重激启学生说的指导
在数学教学中。怎样激发启发学生说呢?第一,启发学生说思路,说思维过程。课堂上要让每个学生都有说自己想法的机会,可以让学生根据某一个问题,独自小声说,同桌之间练习说,四人小组相互说,教师学生共同说……等等。通过说,培养学生语言的条理性和思维的逻辑性。第二,引导学生用简明、准确、规范的数学语言,完整地回答问题,在引导学生观察、分析、推理、判断后,启发学生用自己的话总结,概括出定义、法则或公式,使感性认识上升到理性认识。
4.培养学生写的指导
数学教学中,教师要指导学生学会做学习笔记;指导学生将数学语言转化为数学符号;指导熟练掌握数学常用书写格式,指导他们学会作图,培养学生的直观思维能力。
5.严格学生纠错的指导
(1)设置“陷阱”,诱使学生得出错误
有的放矢地选一些颇具迷惑性的题目,在易错的节骨眼上设“陷阱”,先诱使学生陷入歧途,制造思维冲突,再引导学生在自查自理中挣扎出来,达到学生深刻理解概念和知识的目的。
(2)适时恰当引入错例,引导学生独立评析错误
对于例题的错误解法由学生独立地对错误进行评析和判断,引导学生独立寻找错误加以分析,让其自己进行矫正。
(3)强调学生用知识意识的指导
所谓数学应用就是人们在自己工作、学习和生活中,碰到各种各样的实际问题时,会想到用数学方法解决它。如何指导及培养呢?一是培养学生观察生活中的数量,记住一些常用数量;二是注意用实际问题引发数学新知识,并及时用新知识解决提出的问题;三是要告诉学生,数学图形是思考的工具。数形结合,培养学生的用图能力和直观思维能力;四是安排一定的室外数学实习,让学生去讨论实际的数学问题;五是收集一些报刊或书籍,让学生体会到数学应用的广泛性;六是鼓励学生发现和修改课本或学习资料中不合实际的问题。
总之,学法指导必须与新课程实施同步,应从初一年级抓起,循序渐进,持之以恒,协调发展。教师应善于研究学生学法的现状并加以分析,研究数学方法与学生指导策略,指导有序,对症下药,因人而异,因材施教,让学生知其然,也知其所以然,形成自学能力,提高学习效率。只有这样才能有助学生由“学会”向“会学”转化,真正把素质教育落到实处,使新课程的实施落到实处。
初中数学学习方法3
教学活动是教师和学生同时进行的“教”与“学”活动的辩证统一。十几年的教学实践,我体会到,教师自身素质,这仅仅是教学质量的一个方面,更重要的是充分发挥学生的主观能动性,从“教会”向“学会”到“会学”的方向发展,因此,学生的,成了教师提高学生素质的根本性一环。通过认真学习了罗琳老师的《初中生数学》,再结合平时教学实践,对如何指导学生学习要“得法”提出三点看法。
(一)教师要有人格魅力,要有良好的师生关系,“亲其师而信其道”。如果学生不给“面子”,有再好的学习方法也白搭。
(二)教师必须把指导落实到位,“授之以鱼,不如授之以渔”。结合教学实际,画龙点睛地对学生点拨学习方法。在传授知识训练技能时,教师要引导学生加以总结,使其逐步系统完善,并能找出规律性的东西。在引导学生总结时,进行的理性反思,强化并进行迁移应用,在训练中巩固掌握学法。最后指导学生课前预习和形成自学能力,这样就将学法指导的重要目标——教会学生学习落到实处。
(三)在对学生进行学法指导的同时,注重对学生数学学习能力的培养,使初中学生具备一定的学习能力,这样就具有从事继续学习的基本功,所谓“今天的教为了明天的不教”。如培养学生的观察力,总是要先给学生观察事物的一些方法,力求做到细致、全面。能够通过观察发现事物的`差异,从而抓住事物的本质、属性和特点。在这一系列的训练活动中,学生的观察力才会得到培养和逐步提高。因此,在对学生进行“学法”指导的同时,努力提高学生的推理能力、抽象能力、想象力和创造力,就显得非常重要。
以上三点是个人在学习时的体会,望专家多指导,谢谢!
初中数学学习方法4
有理数概念的建立,有理数性质的介绍,有理数运算法则的规定,这一切都为同学们进一步学习代数做了必要的准备。那么接下来的初中数学学习方法请同学们认真记忆了。
《初一代数》(上册)的数学内容从整体上看主要是解决从算术进展到代数这个重要的基本课题。我们认为主要体现在以下两个方面。一方面是“数集的扩充”,即引进负数,把原有的算术数集合扩充到有理数集合;另一方面是解代数方程的原理和方法,即从用字母表示数,到用“列方程”取代“列算式”解应用问题。
数集的每一次扩充都是解决实际问题和解决数学自身矛盾的需要。同学们在学习有理数一章时,希望大家要有意识地培养自己逻辑推理能力,使自己会观察、比较、分析、综合、抽象和概括,会用归纳和类比的方法进行推理。另外要特别重视提高运算能力,有过硬的运算基本功。为此,不仅能根据法则、运算规律、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件,使运算“合理、简捷、准确”。为了解决用算术方法解应用题的局限性,人们想出用字母表示未知数,把问题中的相等关系平铺直叙地用代数方程式表达出来。由于表示未知数的字母也是数,因此,它们也可以按照数的运算的通性、通法进行运算,从而求得未知数所应有的`值。同学们要充分注意这一“历史性”的突破。为此,不仅要熟练掌握含数字的算术的变形和计算,更要切实掌握好含字母的代数式(目前主要是整式)的变形和计算,解方程的基本方法和步骤,这一切都是为列方程解应用题而展开的。通过列方程解应用题的学习,体会如何把实际问题抽象成数学问题,用方程思想处理数学问题,形成用数学的意识,培养我们自己分析问题和解决问题的能力。
初中数学学习方法5
1、课前认真预习。预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高。具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟。在时间允许的情况下,还可以将练习册做完。
2、让数学课学与练结合。在数学课上,光听是没用的。当老师让同学去黑板上演算时,自己也要在草稿纸上练。如果遇到不懂的难题,一定要提出来,不能不求甚解。否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。
3、课后及时复习。写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题。可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的`课。
4、单元测验是为了检测近期的学习情况。其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好。老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。
初中数学学习方法6
数学是一门思维性、逻辑性、连贯性很强的学科,它是符号、数字、推理与运算、图形的结合,学生在学习中注意力往往容易分散,教师如果不注意对学生兴趣的培养,则极容易使学生觉得枯燥无味,产生厌学情绪,兴趣是最好的老师,是行为的原动力,托尔斯泰曾说:成功的教学需要的不是强制,而是激发学生的兴趣。“一个人对学习有了兴趣,就能全身心的投入学习中,一定要注意采用多种教学手段去培养和激发学生的兴趣”。其中学习方法的掌握,也能促进学生学习的兴趣。古人云“学而时习之”“温故而知新”对今天的学生来说仍是很有用的学习方法,复习时,归纳总结我认为是其中重点之一,掌握归纳的内容是关键,及时的归纳能使学习效果显著,事半功倍。
归纳的内容包括以下几种:
一、归纳知识
尤其是数学知识前后联系紧密,且知识呈现一种上升趋势,若能归纳好,有关知识就能熟练应用。例如:函数内容,八年级内容中,先讲函数定义,然后学习正比例函数,一次函数,进而研究函数的图像与性质,点坐标与解析式的关系,确定解析式的方法,为九年级学习的反比例函数,二次函数提供了研究的方法。
二、归纳解题方法
解题方法虽然很多,但总有一些常用方法,例如:证明“线段相等”是很常见的题型,常见方法有:中点定义,等量代换,等量加减,全等三角形对应边相等,等角对等边,轴对称性质,中心对称性质,平行四边形的对边相等,矩形对角线相等,等腰梯形对角线相等,角平分线性质,线段垂直平分线性质等,然后总结常见方法有:全等三角形对应边相等,平行四边形对边相等,矩形对角线相等,等角对等边,线段垂直平分线性质等,这样做题中就会比较容易确定解题方法。
三、归纳几何内容分析问题的方法
数学问题的解决,分析问题最关键,综合法最常用,另外还有根据经验猜测法,例如:“五角星形状图形五个内角之和是180度”,则从三角形内角和是180度考虑,把五个内角之和转化为某一个三角形的内角和。
四、归纳易错易混知识及考点
学生对于知识的掌握局限于当堂学会,对于作业中出错的`问题不重视,以致于在考试中错误的问题仍得不到修正,所以应该让学生学会归纳易错题型及知识点。例如在学习一元一次方程解法中,对于每一步需要注意的问题都要进行归纳,对于去分母这一步要注意每一项都乘以公分母,一定不要漏项,尤其是无分母项一定不要漏乘;另外分子要当做一个整体来对待,必要时要对分子加括号,尤其分子是一个多项式时要加括号,对于去括号这一步要注意符号问题,如果括号前是负号一定要各项都改变符号,不要漏掉后面的项,对于移项这一步要注意,以等号为界限,从等号一边移到另一边才需要变号,只在等号一边交换位置而不过等号,一定不要变号,合并同类项这一步要注意系数相加减中的减法,减去一个数等于加上这个数的相反数,一定要按这个要求做,系数化为一这一步要注意在结果中系数做的是分母,还要注意符号问题一定不要掉符号。
每章节的考点题型也必需要归纳,例如:分式这一章考点有分式的性质,分式有意义的条件,分式的值为零的条件,分式的加减乘除混合运算,分式的化简求值等考点,另外分式的化简求值是中考必考题型。
新课标要求下的学生不但要学习,而且要学会学习,学会合作,学会交流,学会创新,学会发展,更要为终身学习储备学习方法。
所以在教学中要注意培养学生的学习方法,尤其是归纳总结要培养。作为教师我们的任务不仅要很好的传播和学习已经形成了知识,而且要注意培养学生独立观察,尽量让学生动脑思考,学生动口表述,尽量让学生发现问题,归纳总结问题,一定要体现教师主导作用,学生主体地位。
初中数学学习方法7
(1)如何将文字语言转化为符号语言;
(2)如何将推理思考的解题过程用文字书写表达出来;
(3)正确地由条件画出图形。
2.课后复习巩固方法:
(1)适当多做题,养成良好的解题习惯;
(2)细心地挖掘概念和公式;
(3)总结相似的类型题目;
(4)收集典型错误和不会做的题目。
3.培养反思的习惯:
(1)讲课内容及所学的数学思想和方法(2)课上掌握情况
(3)没掌握的内容及原因
(4)做作业情况
(5)一天中学习数学的时间
(6)对自己说几句话
4.小结或总结的方法:
一看、二列、三做、四归、五编。
指导:中学生学习方法七步走
在学习过程中,掌握科学的学习方法,是提高学习成绩的重要条件。以下我分别从预习、上课、作业、复习、课外学习、实验课等七个方面,谈一下学习方法的常规问题。
一、预习。预习一般是指在老师讲课以前,自己先独立地阅读新课内容,做到初步理解,做好上课的准备。所以预习就是自学。
1.通览教材,初步理解教材的基本内容和思路。
2.预习时如发现与新课相联系的旧知识掌握得不好,则查阅和补习旧知识,给学习新知识打好牢固的基础。
3.在阅读新教材过程中,要注意发现自己难以掌握和理解的地方,以便在听课时特别注意。
4.做好预习笔记。预习的结果要认真记在预习笔记上,预习笔记一般应记载教材的主要内容、自己没有弄懂需要在听课过程中着重解决的问题、所查阅的旧知识等。
中考生如何选择和填报志愿
中考生如何选择和填报志愿 学习方法
今年高级中等学校招生录取方式为提前招生录取、“招优”录取和统一招生录取,且全部采取远程网上录取方式进行。
考生首先应根据自己的实际情况,慎重选择参加哪种招生录取方式。考生如参加提前招生并被录取,统一招生志愿将视为自动放弃。考生参加统一招生,最多可选报八个志愿学校,每个志愿学校可选报两个专业。
被确定为“优秀生”的考生填报志愿时需将“招优”学校普通班专业填报在第一志愿第一专业栏内且不得参加提前招生录取。被“招优”学校录取的考生要承认录取结果,其所填报的其它志愿自动作废;未被录取的优秀生第一志愿作废,从第二志愿开始参加统一招生录取。
考生填报志愿要兼顾社会需求、个人兴趣爱好和各方面条件(如学习成绩、体检情况、动手动脑能力、居住位置等)
十大学习好习惯让你成为“尖子生”
【摘要】尖子生”是每个家长对孩子的希望,那么什么样的学习习惯最容易让孩子成为学习上的尖子生呢?据调查显示,所有的尖子生中无论是在学习、预习、复习中,都至少有两到三个良好的学习习惯。下面我们总结如下十种学习尖子生的学习好习惯。
1、认真预习的习惯 很多同学只重视课堂上认真听讲,课后完成作业,而忽视课前预习,有的同学根本没有预习,其中最主要的原因不是因为没有时间,而是因为没有认识到期预习的重要性。那么预习有什么样好处呢?课前预习也是学习的重要环节,预习可以扫除课堂学习的知识障碍,提高听课效果;还能够复习、巩固已学的知识,最重要的是能发展学生的自学能力,减少对老师的依赖,增强独立性;预习可以加强记课堂笔记的针对性,改变学习的被动局面。在预习时,要做到:了解教材的大概内容与前面已学的知识框架;找出本章或本课内容与前面已学知识的联系,找出所需的旧知识,并补习此时的知识;找出本课的难点和重点(作为听课的重点);对重点问题和自己不理解的问题,用笔划或记入预习笔记。
2、专心听课的习惯 如果课前没有一个“必须当堂掌握”的决心,会直接影响到听讲的效果,如果在每节课前,学生都能自觉要求自己“必须当堂掌握”,那么上课的效率一定会大大提高。实际上,有相当多的学生认为,上课听不懂没有关系,反正有书,课下可以看书。抱有这种想法的学生,听课时往往不求甚解,或者稍遇听课障碍,就不想听了,结果浪费了上课的宝贵时间,增加了课下的学习负担,这大概正是一部分学生学习负担的重要原因。 集中注意力听课是非常重要的,心理学告诉我们注意是心理活动对一定对象的指向和集中,它是心理过程的动力特征。注意的指向性,可使人的心理活动在每一瞬间都能有选择的反映事物;注意的集中性,可使事物在人脑中获得清晰和深刻的反映。正因为注意拥有指向性和集中性两个重要的特征,所以,注意具有选择、保持以及对活动的调节和监督的'功能。思路就是思考问题的线索。上课听讲一定要理清思路。要把老师在讲课时运用的思维形式、思维规律和思维方法理解清楚。目的是向老师学习如何科学地思考问题,以便使自己思维能力的发展建立在科学的基础上,使知识的领会进入更高级的境界。分心是注意的反面,分心不是没有注意,只是没有把注意指向和集中在当前的学习任务上,心不在焉,必定“视而不见、听而不闻、食而不知其味”。
3、及时复习的习惯 及时复习的优点在于可加深和巩固对学习内容的理解,防止通常在学习后发生的急速遗忘。根据遗忘曲线,识记后的两三天,遗忘速度最快,然后逐渐缓慢下来。因此,对刚学过的知识,应及时复习。随着记忆巩固程度的提高,复习次数可以逐渐减少,间隔的时间可以逐渐加长。要及时“趁热打铁”,学过即习,方为及时。忌在学习之后很久才去复习。这样,所学知识会遗忘殆尽,就等于重新学习。俗话说“温故而知新”,就是说,复习过去的知识能得到很多新的收获。这个“新”主要指的是知识达到了系统化的水平,达到了融会贯通的新水平。首先,知识的系统化,是指对知识的掌握达到了一个更高的境界,也就是从整体、全局或联系中去掌握具体的概念和原理,使所学的概念和原理回到知识系统中的应用位置上去。其次,知识的系统化,能把多而杂的知识变得少而精,从而完成书本知识由“厚”到“薄”的转化过程。系统化的知识,容量大,既好记又好用。最后,系统化的知识有利于记忆。道理很简单,孤立的事物容易忘记,而联系着的事物就不容易忘记。想搞好知识的系统化,一要靠平时把概念和原理学好,为建造“知识大厦”备好料;二要肯于坚持艰苦的思考。思想懒汉, 逃避艰苦思考的人,是不可能真正掌握好知识的;三要学会科学地思维。
4、独立完成作业的习惯 明确做作业是为了及时检查学习的效果,经过预习、上课、课后复习,知识究竟有没有领会,有没有记住,记到什么程度,知识能否应用,应用的能力有多强,这些学习效果问题,单凭自我感受是不准确的。真正懂没懂,记住没记住,会不会应用,要在做作业时通过对知识的应用才能得到及时的检验。做作业可以加深对知识的理解和记忆;实际上,不少学生正是通过做作业,把容易混淆的概念区别开来,对事物之间的关系了解得更清楚,公式的变换更灵活。可以说做作业促进了知识的“消化”过程,使知识的掌握进入到应用的高级阶段。做作业可以提高思维能力;面对作业中出现的问题,就会引起积极的思考,在分析和解决问题的过程中,不仅使新学的知识得到了应用,面且得到了“思维的锻炼”,使思维能力在解答作业问题的过程中,迅速得到提高。做作业可以为复习积累资料;作业题一般都是经过精选的,有很强的代表性、典型性。因此就是做过的习题也不应一扔了事,而应当定期进行分类整理,作为复习时的参考资料。
5、练后反思的习惯 在读书和学习过程中,尤其是复习备考过程中,每个同学都进行过强度较大的练习,但做完题目并非大功告成,重要的在于将知识引申、扩展、深化,因此,反思是解题之后的重要环节。一般说来,习题做完之后,要从五个层次反思:
(1)、怎样做出来的?想解题采用的方法;
(2)、为什么这样做?想解题依据的原理;
(3)、为什么想到这种方法?想解题的思路;
(4)、有无其它方法?哪种方法更好?想多种途径,培养求异思维;
(5)、能否变通一下而变成另一习题?想一题多变,促使思维发散。当然,如果发生错解,更应进行反思:错解根源是什么?解答同类试题应注意哪些事项?如何克服常犯错误?“吃一堑,长一智”,不断完善自己。应当培养的优良习惯还有许多,诸如有疑必问的习惯,有错必改的习惯,动手实验习惯,查找工具书的习惯,健康上网、积极探究的习惯等等。从课堂学习的过程看,还有认真预习、专心听课、及时复习、独立完成作业、积极应考等好习惯。
合理利用时间 多总结多归纳
转眼间,我们就进入了中考冲刺阶段,当倒计时数字由三位数转为两位数时,也是我们最为忙碌、最为紧张的时刻来临之际,针对于初三的学生,如何在时间紧张的时候做好冲刺?如何能够利用有效的时间实现自己的目标?
首先,调整好自己的心态,一个好的心态将是我们成功的基石。
越是紧张的时刻,我们越要临危不乱,我们越要保持一颗平常的心,做好自己的规划,调整好自己的学习步伐和学习节奏,只有这样,我们才能不被外界所打扰,才能净下心来用心的复习。相反,此时如果出现“浮躁”的心态,如感觉自己什么问题都懂、感觉老师讲的太简单、感觉自己没有不会做的试题……,这样很容易出现后期学习乏力,并且让自己丧失更多的学习机会,最终惨败中考考场,这样的例子每一届比比皆是。因此,我们需要在此时保持平和的心态,不骄不躁,继续努力学习,钻研问题,把每一个基础知识点弄扎实,把每一类型题目弄扎实,踏实的迎接中考的到来!
其次,初三各科总体多回顾,多总结,多归纳。
初三年级春季,一般学校进度都是专题复习,学习状态基本都是“发试卷、做试卷”。那么越是这个时候我们越要做好回顾,做好总结,做好归纳。当我们学完一个专题时,针对于这一个专题里好的例题我们需要经常去回顾,去复习,让自己不遗忘,而且针对于本专题非常好的例题一定要单独抄写出来,时常去复习,当我们在初三下学期不断的复习时,我们会发现我们能够针对于同一道例题找出多种方法,更有利的是我们能够理解的更加深刻,从而真正意义上把某一道试题掌握。
第三,不同科目做好不同的规划
初三下学期,我们一定要努力让自己比较薄弱的科目进步,针对于中考五科尽量不要偏科,此时我们可以多做做历年一模考试试题,通过做套题来让自己熟悉考试模式与结构,让自己随时被包围在中考考试环境中。
做计算题也要认真审题
做计算题也要认真审题 来源:网络收集作者:木头
解答应用题的时候,我们都非常重视审题这个环节,因为不认真审题,就不能正确地理解题意、分析数量关系,解题也就无从入手了。而在做计算题的时候,往往认为数目和运算符号都是明摆着的,不审题也照样可以计算。其实,做计算题的时候同样也是需要认真审题的。通过审题,可以看清数目的特点,运算之间的关系,既能确定运算顺序,又能进一步思考:是否可以应用运算定律或运算性质,使计算方法更加合理、灵活,计算更加简便呢?审题,可以培养我们的观察能力,发展我们的思维能力,提高我们的计算能力。 现在,让我们通过计算下面的题,进一步认识审题是多么的重要啊!()÷5×有的同学说这道题的计算结果是,你同意吗?先让我们一起来审题:这是一道含小括号的三步计算式题,按运算顺序的规定,应该先算小括号里的,再算小括号外的。小括号里+,和是,小括号外的乘法与除法属同一级运算,计算时应该从左往右依次进行。正确的计算过程是:(+)÷5×=÷5×=××=。计算的最后结果应该是,而不是。从表面上看,造成错误的原因是计算时违反了运算顺序,实际上呢,是有的同学被5×正好可以约分这一组合形式吸引所致。如果我们在计算之前能够认真审题的话,那么,这样的错误是完全可以避免的,你说对吗?又如15×78+45×74,这是一道“求两积之和”的三步式题,粗看,数目和和运算之间没有明显的特点,按运算顺序应该先分别计算出15×78、45×74的积,然后将两个积相加,它们的和便是计算的最后结果。如果我们在审题时,充分利用自己头脑中的数字知识,就能看到数目间的倍数关系,并能想到将原来的算式转化成为符合应用乘法分配律进行简算的可能性。依据“两个数相乘,一个因数扩大几倍,另一个因数缩小同样的倍数,积不变”的性质,将15扩大3倍为45,78缩小3倍为26,使15×78转化成为45×26。计算过程是:15×78+45×74=(15×3)×(78÷3)+45×74=45×26+45×74=45×(26+74)=45×100=4500。由此可见,认真审题,有时可以将题目进行合理地“改造”,使计算简便。
认真审题,既是一个良好的学习习惯,也是一项重要的学习能力。习惯和能力都需要有意识地去培养,让我们在做计算题的过程中,自觉地增强审题意识,锻炼审题能力吧!
“分组自学辅导”法
四川省巴中县石门乡中心小学补世炜从一九七八年开始。经过九年反复试验探究,借鉴复式班教学的特点,在教学上摸索出分组“自学辅导”教学方法。农村小学、特别是山区小学,生源分散,学生的社会接触面小,家庭经济发展不平衡,教育方式还处在落后的阶段。由于种种原因,导致一个教学班学生的知识基础、个性特点、智力水平存在着相当大的差异,给教学工作带来了困难。那么如何提高农村小学的教学质量呢?“分组自学辅导”教学方法是在“自学辅导法”、“研究性学习法”、“引导发现法”、“尝试教学法”等多种教学方法的基础上总结出一种适合分组教学特定条件的教学方法。它运用控制论、系统论、信息论的基本原理,科学地处理了信息的交换、传输和反馈,是按照儿童的心理特点和认识规律来设计教学程序的。“分组自学辅导”教学方法遵循“因材施教”的原则,立中于中等生,重视后进生的转化和优等生的发展。不仅注重教学学生掌握知识,更注重教学生获取知识的方法;不仅注重学生能力的培养,而且注重学生智力的开发。
分组自学辅导首先要解决分组的问题。每学期开学初,都要对学生进行细致调查、分析、比较,按思想品德、基础知识、智力因素三个方面的差异把学生分成优等生(A)组,中等生(B)组、后进生(C)组等三个大组,登记造册。各大组又分为几个学习小组,每小组以四人为宜。然后采取自报、公议、指导相结合的方法,确定本学期每个学生提高成绩的具体目标。在分组过程中,教师要特别注意做好学生的思想工作,尤其是对后进生组的学生讲明分组的目的,使他们消除顾虑,打消自卑感,立志早日赶上中等生或优等生的水平。座住编排要便于分组辅导和学生间的相互讨论,后进组学生的座位应排在教师最易顾及的位置。课堂教学程序第一步,教师把握本节内容与要求,找准知识的生长点。或设置疑问,或创设悬念,造成知识冲突,使学生形成最佳心理状态。第二步,教师提出自学要点,引导学生独立思考和理解。粗读、细读教材,边读这批划、注记、写提要等。教师巡回辅导,启发思考,留心观察,抓住时机,适时点拨。重点放在对后进组的辅导。
初中数学学习方法8
误区一:“一听就懂,一做就错或不会”
在数学学习过程中,常常出现这种现象,这也是在课余经常能够听到的部分同学的反馈信息。为什么学生在课堂上听懂了,课后解题时一旦遇到稍有变化的新题型时却无所适从呢?这说明上课听懂还停留在“听懂”这一初级层次上,而能达到举一反三应用知识解决问题却是对学生对数学知识在头脑中加工重组构建的更高层次的要求,也是每位同学必须达到的要求。
教师所举例题是范例同时也是思维训练的手段,作为学生不应该只学会题中的知识,更要学会领悟出解题思路与技巧,以及蕴藏其中的数学思想方法。
针对这种情况,应作出如下的策略调整,步骤如下:
第一步:合上书,自己重做一遍例题,做题过程中,找出自己遇到的思维受阻的地方;
第二步:对照课本解法,寻找自身思维漏洞,问自己:为什么课本这样解决问题?我的解法不足之处在哪里?
第三步:进一步思考:本题的条件、结论换一下还成立吗?本题还有其它的解法与结论吗?
第四步:总结解题规律,提醒自己容易出错的地方,作出重点提醒标记。
误区二:“数学多做题就能提高成绩,数学概念不重要”
有不少的.学生认为数学多做题就能学好,可结果却往往事与愿违,这是为什么呢?很多的原因在于概念不清。数学概念是学习数学的基础。如果概念不清,往往导致认识、理解偏差,解题出错。
例如,对正、负数概念的理解。在学生刚学习正负数时,教材曾把算术数前带有正号和符号的数分别叫做正数和负数。随着学习的逐步深入,特别是在学习用字母表示数和有理数的运算以后,再这样形式地理解正负数就非常不够了。这时应当把负数理解为小于零的数。如果缺乏对概念的这些更深层次的理解,就将导致出现“-a是负数”,“a>-a”,“a+b≥a”等一系列错误。
这是因为概念不清造成失误的典型例子。除此之外,还有很多。由此可见,概念不清,做再多的题只能起到“事倍功半”的效果,想提高成绩谈何容易!
调整策略:
第一步:记住概念,理解概念;
第二步:“咬文嚼字”,抓住关键词,吃透概念;
第三步:联系前后相关知识,深入理解概念;
第四步:对照题目条件,联想、对比相应概念;
第五步:积累经验,精选题目,注意类型,勤于总结。
误区三:“多做题目总能遇到考题”
有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免 考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。
调整策略:
一让自己花点时间整理最近解题的题型与思路;
二要思考:这道题和以前的某一题差不多吗?此题的知识点我是否熟悉了?最近有哪几题的图形相近?能否归类?
三要善于归类。不仅总结知识,更要总结方法与技巧,只有这样,才能触类旁通、事半功倍。
如:
在“无理方程”的教学中,归纳出解法:
①去分母法;
②换元法;
对于换元法给予归纳出两种常见的题型:
A平方型;
B倒数型。
又如在“三线八角”教学中,由于图形较于复杂,学生不易找出同位角、内错角、同旁内角,可以总结出同位角找字母“F”,内错角找字母“N”,同旁内角找字母“L”。只有不断的总结,才能有创新和发展。
误区四:“对于数学公式,记住并会套用就行”
这种想法与做法在解题过程中并非完全不奏效,从而让这样做的同学更加坚定了信念。然而这种做法也并非完全奏效,也有“失灵”的时候。后者多出现于以下几种情况:
一是所给题目条件有限制,不能完全适用于公式;
二是公式本身也有限制条件,并非适用所有题目的求解。
如:解方程:(a+1)x2-2x+5=0。有的同学看完题目就开始套用“一元二次方程的求根公式”。事实上,本题能否套用求根公式主要取决于方程本身是否一定是一元二次方程。因此应就“a+1”是否为0作出讨论,分别就两种情况求解。
调整策略:
一是不仅记住公式,更要记住公式的适用条件与范围;
二是对照公式,仔细审题,看清哪些适用,哪些需另做讨论。
误区五:“多做难题、偏题、怪题,就能提高成绩”
学习过程中经常遇到这样的学生,简单的题目不屑一做,总喜欢钻研一些综合性强的、灵活度高的“难题”,以为这样就能学好数学;而喜欢做“偏题”、“怪题”的同学想法也很简单,以为这样就能拉开与其他学生的距离,提升自己学习成绩。可结果却总爱捉弄这些独辟蹊径的学生,给他们当头浇上一瓢冷水,让他们不由对自己的学习方法产生怀疑,甚至灰心失望。分析原因不难发现:中考试卷难题少,偏题、怪题很难遇到。而影响成绩的主要因素不是这些“独特”题目的因素。
调整策略:以基础题目为主,注意总结中考试题出题类型与规律,适当做少量几道有针对性的综合灵活题目。
初中数学学习方法9
数学是一门基础学科,对于我们的广大中学生来说,数学水平的高低,直接影响到物理、化学等学科的学习成绩,数学的重要地位由此可见。学数学要抱着浓厚的兴趣去学习,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地数学。
概念是数学学科的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。
多看一些例题
细心的朋友就会发现,我们老师在讲解基础内容之后,总是给我们补充一些课外的例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:
1、不能只看皮毛,不看内涵。
我们在看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。
2、要把想和看结合起来。
我们在看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的.思路和解答不同,也要找出原因,总结经验。
3、各难度层次的例题都照顾到。
看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。
这样可以丰富知识,拓宽思路,这对提高综合运用知识的能力很有帮助。学好数学,看例题是很重要的一个环节,切不可忽视。
多做练习
要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。
1、必须熟悉各种基本题型并掌握其解法。
课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。
许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。
2、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。
数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌握了更多的思维方法,为做综合题奠定了一定的基础。
3、多做综合题。
综合题,由于用到的知识点较多,颇受命题人青睐。
做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。
初中数学学习方法10
作为和代数并列为初中数学两大知识点的几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。话虽如此,变形金刚也不是无敌的,最终仍旧是人类的智慧更胜一筹。实际上,每一道几何题目背后都有着一定的法则和规律,每一类题都有着相似的解题思想,这种思想的集中体现,便是模型(变形金刚的原力所在)。对于几何,我们不仅仅要在战术上坚定执行,在战略层面上也要对几何在初中三年的整体学习有一个明确的了解。
得模型者得几何,而模型思想的建立又并非一朝一夕,是需要同学们在大量的实战做题和不断总结方法中培养出来的。对于模型的理解和认识,分为很多层面,最浅的是基本的形似,看到图形相仿或相似的题目,能够有意识的联想以前学过的题型并加以运用,套用,这是最简单的模型思想。高一些的是神似,看到一些关键点,关键线段或是题目所给条件的相似便能够联想到所学知识点,通过推理和演绎逐步取得正确的解法,记住的是一些具体模型,这,是第二种层次。最高的境界是,心中只有很少几种基本模型,这些模型就像种子,看到一道题目就会发芽,开花结果,随着对于题目的深入理解,不断地寻找适合的花朵,每一朵花上面都有着一种具体的模型,而每种模型之间,都会有树枝相连,相互间并不是孤立的,而是借由其他条件贯穿连接的。达到这样的理解才能算是包罗万象,驾轻就熟。
我们对于模型的把控能不应当仅限于会用于具有明显模型特征的题目,对于一些特征并不明显的题目,我们要有能力添加辅助线去挖掘图形当中的'隐藏属性。这就要求同学们对于每一种基本图形的理解要十分深刻,不仅仅要认识模型,还要会补全模型,甚至构造模型来解决问题,这对于同学们动手添加辅助线的能力要求就很高了。
学好几何无非做好以下几点想学好几何,一定要注意以下几点:
1、多做题,在起步初期,多见一些题,对一些模型有初步认识。
2、多总结,尽量在老师的帮助下能够总结出一些模型的主要辅助线做法和解题方法。
3、多应用,多用模型解决问题,不要没有方法的撞大运,要根据图形特点思考解法。
4、多完善,不断做题总会有新的知识添加到已有的模型体系中来,不断壮大自己的知识树。
5、多思考,对于任何一道题都有可能存在不止一种方法,每种方法涉及到的模型不尽相同,要能够通过一题多解发现模型之间的相互关系,增强自己对模型的理解深度。
从长远的角度来说,中考几何压轴的考察趋势越来越倾向于竞赛化的趋势,而考察重点则是以三大变化为主题的综合题目。如今三大变换的思想也在不断的渗透在初二几何的题目中来,平移、旋转、轴对称这些技巧也会慢慢被我们所熟识。然而仅仅熟悉并不够,我们还要结合模型把他们灵活掌握并能够精确与用到实际的题目中去,这样才能使我们做几何题目的能力有所提高。
初二这一年是模型大爆炸得时期,上学期的全等三角形的模型,下学期的四边形模型以及很多学校在初二暑假就会开设的圆的知识,很多都是需要同学们运用模型思想解决的问题。这些知识点不仅多,而且十分重要,可以说初中几何部分的重点全部集中在初二这一年,故而打好基础,勤加练习,多做总结是我们不得不去完成的任务。
初中数学学习方法11
一:平时的数学学习:
1、课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.
具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
2、让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.
听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
3、课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
4、单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.
二:期中期末数学复习:
要将平时的单元检测卷订成册,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍.另外,自己还可以做2-3张期末模拟卷.
三:数学考试技巧:
如果想得高分,在选择、填空、计算题上是不能丢分的.在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容.在通常情况下,期末考试的.难题都是不知道怎么做,但有可能突然明白的那种.
遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空.这些条件都对你的解题有很大帮助.在期中、期末考试中有充足的时间,将自己的速度压下来,
不是越快越好,争取一次做成功.大概留35分钟的时间检查.最终提醒大家:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的.还要将所学的知识用到生活中去,做到学以致用.
当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的快乐.
初中数学学习方法12
初中数学学习方法
第一,要对计算足够的重视
总以为计算题比分析应用题容易得多,对一些法则、定律等知识学得比较扎实,计算是件轻而易举的事情,因而在计算时或过于自信,或注意力不能集中,结果错误百出。
其实,计算正确并不是一件很容易的事。例如计算一道像37×54这样简单的题,要用到乘法、加法的运算法则,经过四次表内乘法和四次一位数加法才能完成。至于计算一道分数、小数四则混合运算题,需要用到运算顺序、运算律和四则运算的法则等知识,经过数十次基本计算。在这个复杂的过程中,稍稍粗心大意就会使全题计算错误。
因此,计算时来不得半点马虎。
第二,要按照计算的一般顺序进行
首先,弄清题意,看看有没有简单方法,有没有得数保留几位小数等特别要求。
其次,观察题目特点,看看几步运算,有无简便算法。
再次,确定运算顺序,在此基础上利用有关法则、定律进行计算。
最后,要仔细检查,看有无错抄、漏抄、算错等现象。
第三,要养成认真演算的好习惯
有些同学由于演算不认真而出现错误。数据写不清,辨认出错。这样既不便于检查,又极易看错数据,所以一定要养成认真书写数字的良好习惯。
第四,不能盲目追求高速度
计算又对又快是最理想的目标,但必须知道计算正确是前提条件,是最基本的要求,没有正确作基础的高速度是没有任何价值的。所以,宁愿计算得速度慢一些,也要保证计算正确,提高计算的正确率
初中数学高效学习方法有哪些
1、平时的数学学习:
(1)课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
(2)让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
(3)课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
(4)单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.
2、期中期末数学复习:
要将平时的单元检测卷订成册,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍.另外,自己还可以做2-3张期末模拟卷.
3、数学考试技巧:
如果想得高分,在选择、填空、计算题上是不能丢分的.在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容.在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种.遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的.几题填空.这些条件都对你的解题有很大帮助.在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功.大概留35分钟的时间检查。
初中数学学习复习技巧
1.读的方法。同学们往往不善于读数学书,在读的过程中,易沿用死记硬背的方法。那么如何有效地读数学书呢?平时应做到:
一是粗读。先粗略浏览教材的枝干,并能粗略掌握本章节知识的概貌,重、难点;
二是细读。对重要的概念、性质、判定、公式、法则、思想方法等反复阅读、体会、思考,领会其实质及其因果关系,并在不理解的地方作上记号(以便求教);
三是研读。要研究知识间的内在联系,研讨书本知识安排意图,并对知识进行分析、归纳、总结,以形成知识体系,完善认知结构。
读书,先求读懂,再求读透,使得自学能力和实际应用能力得到很好的训练。
2.听的方法。“听”是直接用感官去接受知识,而初中同学往往对课程增多、课堂学习量加大不适应,顾此失彼,精力分散,使听课效果下降。因此应在听课程时注意做到:
(1)听每节课的学习要求;
(2)听知识的引入和形成过程;
(3)听懂教学中的重、难点(尤其是预习中不理解的或有疑问的知识点);
(4)听例题关键部分的提示及应用的数学思想方法;
(5)做好课后小结。
3.思考的方法。“思”指同学的思维。数学是思维的体操,学习离不开思维,数学更离不开思维活动,善于思考则学得活,效率高;不善于思考则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。七年级学生的思维往往还停留在小学的思维中,思维狭窄。因此在学习中要做到:
(1)敢于思考、勤于思考、随读随思、随听随思。在看书、听讲、练习时要多思考;
(2)善于思考。会抓住问题的关键、知识的重点进行思考;
(3)反思。要善于从回顾解题策略、方法的优劣进行分析、归纳、总结。
4.问的方法。孔子曰:“敏而好学,不耻不问。”爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。因此,同学在平时学习中应掌握问问题的一些方法,主要有:
(1)追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;
(2)反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;
(3)类比提问法。据某些相似的概念、定理、性质等的相互关系,通过比较和类推提出问题;
(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。
此外,在提问时不仅要问其然,还要问其所以然。
5.记笔记的方法。很大一部分学生认为数学没有笔记可记,有记笔记的学生也是记得不够合理。通常是教师在黑板上所写的都记下来,用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此,学生作笔记时应做到以下几点:
(1)在“听”,“思”中有选择地记录;
(2)记学习内容的要点,记自己有疑问的疑点,记书中没有的知识及教师补充的知识点;
(3)记解题思路、思想方法;
(4)记课堂小结。明确笔记是为补充“听”“思”的不足,是为最后复习准备的,好的笔记能使复习达到事倍功半的效果。
常见初中数学学习误区
误区一:平时是龙、考试是虫
在数学学习过程中,常常出现这种现象,这也是在课余经常能够听到的部分同学的反馈信息。为什么学生在课堂上听懂了,课后解题时一旦遇到稍有变化的新题型时却无所适从呢?这说明上课听懂还停留在“听懂”这一初级层次上,而能达到举一反三应用知识解决问题却是对学生对数学知识在头脑中加工重组构建的更高层次的要求,也是每位同学必须达到的要求。
教师所举例题是范例同时也是思维训练的手段,作为学生不应该只学会题中的知识,更要学会领悟出解题思路与技巧,以及蕴藏其中的数学思想方法。
调整策略:第一步:合上书,自己重做一遍例题,做题过程中,找出自己遇到的思维受阻的地方;第二步:对照课本解法,寻找自身思维漏洞,问自己:为什么课本这样解决问题?我的解法不足之处在哪里?第三步:进一步思考:本题的条件、结论换一下还成立吗?本题还有其它的解法与结论吗?第四步:总结解题规律,提醒自己容易出错的地方,作出重点提醒标记。
误区二:忽略数学概念
有不少的学生认为数学多做题就能学好,可结果却往往事与愿违,这是为什么呢?很多的原因在于概念不清。数学概念是学习数学的基础。如果概念不清,往往导致认识、理解偏差,解题出错。
例如,对正、负数概念的理解。在学生刚学习正负数时,教材曾把算术数前带有正号和符号的数分别叫做正数和负数。随着学习的逐步深入,特别是在学习用字母表示数和有理数的运算以后,再这样形式地理解正负数就非常不够了。这时应当把负数理解为小于零的数。如果缺乏对概念的这些更深层次的理解,就将导致出现 “-a是负数”,“a>-a”,“a+b≥a” 等一系列错误。
这是因为概念不清造成失误的典型例子。除此之外,还有很多。由此可见,概念不清,做再多的题只能起到“事倍功半”的效果,想提高成绩谈何容易!
调整策略:第一步:记住概念,理解概念;第二步;“咬文嚼字”,抓住关键词,吃透概念;第三步:联系前后相关知识,深入理解概念;第四步:对照题目条件,联想、对比相应概念;第五步:积累经验,精选题目,注意类型,勤于总结。
误区三:有押题的心理
有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。
调整策略:一让自己花点时间整理最近解题的题型与思路;二要思考:这道题和以前的某一题差不多吗?此题的知识点我是否熟悉了?最近有哪几题的图形相近?能否归类?三要善于归类。不仅总结知识,更要总结方法与技巧,只有这样,才能触类旁通、事半功倍。
如:在“无理方程”的教学中,归纳出解法:① 去分母法;② 换元法;对于换元法给予归纳出两种常见的题型:A 平方型;B 倒数型。又如在“三线八角”教学中,由于图形较于复杂,学生不易找出同位角、内错角、同旁内角,可以总结出同位角找字母“ F”,内错角找字母“N”,同旁内角找字母“L ”。只有不断的总结,才能有创新和发展。
误区四:不能举一反三
这种想法与做法在解题过程中并非完全不奏效,从而让这样做的同学更加坚定了信念。然而这种做法也并非完全奏效,也有“失灵”的时候。后者多出现于以下几种情况:一是所给题目条件有限制,不能完全适用于公式;二是公式本身也有限制条件,并非适用所有题目的求解。
如:解方程:(a+1)x2-2x+5=0 。有的同学看完题目就开始套用“一元二次方程的求根公式”。事实上,本题能否套用求根公式主要取决于方程本身是否一定是一元二次方程。因此应就“ a+1 ”是否为0作出讨论,分别就两种情况求解。
调整策略:一是不仅记住公式,更要记住公式的适用条件与范围;二是对照公式,仔细审题,看清哪些适用,哪些需另做讨论。
误区五:题海战术
学习过程中经常遇到这样的学生,简单的题目不屑一做,总喜欢钻研一些综合性强的、灵活度高的“难题”,以为这样就能学好数学;而喜欢做“偏题”、“怪题”的同学想法也很简单,以为这样就能拉开与其他学生的距离,提升自己学习成绩。可结果却总爱捉弄这些独辟蹊径的学生,给他们当头浇上一瓢冷水,让他们不由对自己的学习方法产生怀疑,甚至灰心失望。分析原因不难发现:中考试卷难题少,偏题、怪题很难遇到。而影响成绩的主要因素不是这些“独特”题目的因素。
调整策略:以基础题目为主,注意总结中考试题出题类型与规律,适当做少量几道有针对性的综合灵活题目。
初中数学怎么提高分数
第一、课前
课前需要预习,预习需要我们去把接下来要上的内容整体上看一遍,然后找出其中的重点与难点,以及自己无法很好理解的内容,分别做上不同的标记,以便在上课的时候针对自己的问题去认真听课与重点理解。
第二、课上
在上课的时候不太可能整节课都集中精神,这时候就更显现出我们课前预习的重要性了。我们需要在上课的时候集中精神听讲预习中所遇到的重点与难点,尽量地在课堂上去理解吸收。同时也可以看看老师讲的重点与自己课前预习所确定的重点是否一致。 另外,对于老师重点讲解的东西需要做下相应的笔记,以便之后复习用。
第三、课后
课后的复习一定要及时跟上,不仅当天要对学习的内容进行复习,在之后的几天里也应该要花一定的时间去复习,同时可以跟上一些练习进行检测与巩固。如果复习的时候发现还有不明白的地方,一定要及时的去询问老师或是其他同学,将其弄懂。
第四、公式
公式是数学的灵魂,没有公式,就如瞎子摸象,所以,公式要牢记,公式背会了,那么所有的难题都会迎刃而解!
第五、例题
例题就如数学中的模特,供人参考,例题也如母题一般,会一道,道道会,所以例题要搞懂!
第六、资料
数学是练会的,适用于题海战术,题型大同小异,多练才能多得分!
第七、纠错本
失败乃成功之母,记录自己的失败,搞懂它,以后再次遇到,也就只是垫脚石,而不是绊脚石!
第八、不耻下问
孔子曰:敏而好学,不耻下问,不懂得就要问,老师就喜欢学生问问题,不要不好意思,会做题才是王道。
初中数学学习方法13
一、通读全卷一是看题量多少,不要漏看题;二是选出容易题,准备先作答;三是把自己容易忽略和出错的事项在题的空白处用铅笔做个记号
二、认真审题审题一定要细心.要放慢速度,逐字逐句搞清题意(似曾相识的`题目更要注意不背答案),从多角度挖掘隐含条件及条件间内在联系,为快速解答提供可靠的信息和依据
三、由易到难先做容易题,后做难题.遇到难题,要敢于暂时“放弃”,不要浪费太多时间,等把会做的题目解答完后,再回头集中精力解决它
四、分段得分数学解答题有“入手容易,深入难”的特点,第一问较容易,第二、三问难度逐渐加大.因此,解答时应注意“分段得分”,步步为营.首先拿下第一问,确保不失分,然后分析第一问是否为第二、三问准备了思维基础和解题条件,力争第二问保全分,争取第三问能抢到分
五、跳跃解答当不会解(或证)解答题中的前一问,而会解(或证)下一问时,可以直接利用前一问的结论去解决下一问
六、逆向分析当用直接法解答或证明某一问题遇到“卡子”时,可以采用分析法.格式如下:假设“卡子”成立,则(推出已知的条件和结论),以上步步可逆,所以“卡子”成立
七、先思后划当发现自己答错时,不要急于划掉重写.这是因为重新改正的答案可能和划掉的答题无多大区别
八、学会联想当遇到一时想不起的问题时,不要把注意力集中在一个目标,要换个角度思考,从与题目有关的知识开始模拟联想.如“课本上怎么说的?”,“以前运用这些知识解决过什么问题?”,“是否能特殊化?”,“极限位置怎样?”等等
初中数学学习方法14
素质教育以培养创新精神和实践能力为目标,数学教学要实现这一目标,首先要解决学生数学能力的培养,而数学能力的核心是数学思维能力。正是如此,每位数学教师在进行课堂教学时,或多或少,或自觉或不自觉地总要设计一些问题,启发引导学生去思维。我们知道,数学思维教学必须全面考虑,依据不同的教材内容和不同课型的内在联系,提出不同的问题,从而多方面地培养学生的思维能力,提高学生良好的思维品质。下面本人根据多年来的教学实践,谈谈课堂问题设计与思维能力培养的关系。
一、设计发散型问题,培养学生的灵活思维能力
教学实践表明,学生思维能力的灵活程度与学生的发散思维水平密切相关。在日常教学中我们不难发现,优等生可以从同一道试题的题意产生出不同的假象,然后就每一种假想进行合理的思维推理,一旦思维受阻就无所事从,放弃解答。为此就要求我们教师在教学中必须适时合理且经常地设计发散型问题,引导学生多角度、多方面地思考问题。
数学可供设计发散式问题的内容比比皆是,只要我们能充分挖掘教材的内在联系,发挥自身的优势,就能很好地培养学生思维的灵活能力。
二、设计互变型问题,培养学生的逆向思维能力
通常评价一位学生思维灵活与否,其主要的判别条件之一,是考察学生逆向思维能力强不强。逆向思维是从对立的角度去考虑问题,也就是通常所说的:“反过来想一想”。初中教材中定义、公式、法则、图像等通常是按照正向思维方式给出,学生在学习中习惯于这种正向思维,而不习惯逆向思维,这就容易造成学生知识结构的缺陷,造成思维方法上的刻板僵化。所以在教学中,对于每一节教学内容,在向学生进行一定程度的正向思维训练后,应根据学情在教学的各层、各阶段中,适时地设计有一定梯度的互变式问题,培养学生的逆向思维能力。
三、设计陷阱式问题,培养学生的批判思维能力
没有批判就没有创新,因此培养学生的批判能力是我们教师义不容辞的责任。教学实践证明,适时地设计一些陷阱式问题,有利于培养学生的批判思维。这类题是为突破消极思维定势而有意设下的陷阱,使题型与方法错位,诱使学生“上当”、“中计”,从而使学生在失败中吸取教训,在“上当”、“中计”后幡然悔悟。在醒悟境界中学生会变得越来越聪明,思考问题越来越深刻,思维批判能力也就随之而生了。
四、设计变角型问题,培养学生的概括思维能力
变角式问题是指从同一事理的不同角度去提出问题,它与培养学生的概括思维能力密切相关。
设计变角式问题进行的训练,可以暴露问题,从而进行追根求源,防止思维定势的负迁移,克服思维的呆板性,提高学生的概括能力。
例如:农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余人乘汽车出发,结果同时到达。已知汽车的速度是自行车的3倍,求两种车的速度。当学生解完此题后,可变换角度提出下面的问题,让学生分析思考它们之间有何关系?
变式:甲、乙两人各做15个零件,甲先做40分钟后,乙才开始做,由于乙的'工作效率是甲的3倍,结果两人同时完成了任务,求两人每小时各加工几个零件?
从表面上看来,它们分别是行程问题和工程问题,学生通过分析比较会发现,从某种意义上讲,距离就是工作总量,速度就是工作效率,因而行程问题和工程问题有着本质的联系,并能由此推及其它与这相关的数学问题的解答。
五、设计探究型问题,培养学生的创造思维能力
探究式问题是指做完一道习题后,保持已知条件不变,探究能否得出更深刻的结论;或改变命题条件、结论的若干元素,组成新型的逆向的或更一般性的、高一层的命题,并探究它的正确性,这对于培养学生的锲而不舍精神和创新思维能力大有好处。
六、设计开放型问题,培养学生的缜密思维能力
缜密思维要求考虑问题全面,周密而不遗漏。数学教学中若能注重这方面能力的培养,不仅有助于学生提高数学能力,而且有益于学生严谨品格的培养。
数学教学中,我们常发现有的学生分析解决问题时,要么思路不清晰、考虑问题欠周密,导致解题不严密。教学实践证明,适时地设计一些开放型问题,有利于培养学生的缜密思维能力。
例如:解关于X的方程abx2-(a2+b2)x+ab=0,学生的通常解法是直接采用十字相乘法求得方程的两个根,而忽略了“当a=0,b≠0时及a≠0,b=0时原方程变为一次方程”的情况。因此为了提高学生合理分类,全面讨论问题的能力,从而防止“解”不完备,除了多进行实例教学外,还要结合教材设计一些开放式问题对学生进行针对性的训练,以便加强学生思维的纵向延伸于横向交流,使思考问题到达全面、深刻。
综上所述,课堂问题的设计直接或间接决定着学生思维能力的培养,而各种思维能力的发展是相辅相成、不容分割的。因此,必须根据学生的认知基础、智力发展规律、教学内容的特点和内在联系,综合平衡,精心设计课堂问题,全方位地培养学生的思维能力,提高学生的思维品质。
初中数学学习方法15
初中数学的学习方法讲解
例题的学习,对数学的学习很重要,希望同学们多看一下例题,可以很好的帮助同学们对数学知识的学习哦。
多看一些例题。
细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大
忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:
1。不能只看皮毛,不看内涵。
我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易
了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。
2。要把想和看结合起来。
我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。
3。各难度层次的例题都照顾到。
看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的`例题,例如中等难度的竞赛试题。
这样可以丰富知识,拓宽思路,这对提高综合运用知识的能力很有帮助。
学好数学,看例题是很重要的一个环节,切不可忽视。希望同学们考试成功哦。
中小学数学公式大全之追及问题
同学们认真看看,下面是老师对数学中关于追及问题公式的讲解,希望同学们很好的掌握。
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
相信上面对数学中追及问题的相关公式知识已经很好的掌握了吧,希望同学们在考试中取得优异成绩哦,加油吧!
中小学数学公式大全之流水问题
下面是对数学中,关于流水问题的公式内容讲解,相信同学们会从中学习的更好的吧。
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
以上对数学中流水问题知识的内容讲解学习,希望可以给同学们的学习很好的帮助,预祝大家在考试中取得优异成绩哦。
中小学数学公式大全之浓度问题
关于数学中浓度问题的知识,希望同学们很好的完成下面的公式讲解内容哦。
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
【初中数学学习方法】相关文章:
初中数学的学习方法01-12
初中数学学习方法04-25
初中数学学习方法11-29
(精选)初中数学学习方法10-24
初中奥数学习方法08-22
初中数学学习方法03-13
初中数学学习方法09-02
初中数学学习方法12-11
经典的初中数学学习方法01-15
初中数学学习方法11-20