数学说课稿初中

时间:2021-07-17 14:15:22 初中说课稿 我要投稿

有关数学说课稿初中范文集锦9篇

  作为一名人民教师,就有可能用到说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。我们该怎么去写说课稿呢?以下是小编整理的数学说课稿初中9篇,仅供参考,欢迎大家阅读。

有关数学说课稿初中范文集锦9篇

数学说课稿初中 篇1

  各位领导、老师:

  您们好,我是来自广东省惠州学院数学与应用数学专业的 .今天我说课的课题是___________________所选用的教材为人教版义务教育课程标准实验教科书。

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、教学目标分析、教法学法分析和教学过程设计分析四个方面向大家介绍一下我对本节课的理解与设计。

  一。教材分析

  教材分析我通过以下三个方面来加以说明

  1、教材的地位和作用

  本节教材是初中数学 年级 第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习 等知识奠定了基础,是进一步研究 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

  (____是一种重要的数学思想,在实际生活中有广泛的应用,_____的教学,是初中数学教学的重点和难点,在教材中有举足轻重的地位,本节课所学内容,是在学习了_____的基础上,对______进一步拓展;另一方面又为_______的教学打下基础,做好铺垫,在教学中有着呈上启下的作用。)

  2、学情分析

  从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,哎发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了 ,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  备:

  (1 、学生特点分析:

  中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  2、知识障碍上:

  ⑴知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。

  知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。

  3、3、动机和兴趣上:

  明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。)

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  难点确定为:

  二、教学目标分析(基于以上的学情分析,我确定本节课的教学目标如下:)

  新课标指出,教学目标应包括只是与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个右击整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:

  1. 知识与技能:(了解、理解、熟记、初步掌握、会运用 对 进行 等);

  2. 过程与方法:(通过 的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识;以及通过师生的双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实践的能力。)

  3. 情感、态度与价值观:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

  三、 教学方法分析

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的"最近发展区"设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  备:(坚持"以学生为主体,以教师为主导"的原则,即"以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后"的原则,根据学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。)

  最后我来具体谈一谈这一堂课的教学过程:

  四、教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,()是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构注意主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 .

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:

  ① 通过本节课的学习,你学会了哪些知识;

  ② 通过本节课的学习,你最大的体验是什么;

  ③ 通过本节课的学习,你掌握了哪些学习数学的方法?

  (7) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  (以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。)

  以上是我对《 》第几课时的构思和设计,不足之处请各位领导、老师批评指正,谢谢!

数学说课稿初中 篇2

  各位评委:早上好

  今天我说课的题目是 ,这节课所选用的教材为北师大版义务教育课程标准八年级 教科书。

  一、 教材分析

  1、教材的地位和作用

  本节教材是初中数学____ 年级 册的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等

  知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  难点确定为:

  二、 教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1. 知识与技能目标:

  2. 过程与方法目标:

  3. 情感态度与价值目标:

  三、 教学方法分析

  本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习的兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习的兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.

  (7)当堂检测 对比反馈

  (8) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上是我对本节课的见解,不足之处敬请各位评委谅解 !

数学说课稿初中 篇3

  一、教材分析

  本节内容是苏科版数学八年级上册第一章第一节第1课时,本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,既可以让学生感受图形的三种基本运动中“翻折”在几何知识中的作用,又为学生后继学习对称变换、中心对称和中心对称图形及平行四边形的相关知识等做好充分准备;同时这一节也是联系数学与生活的桥梁。

  二、教学目标:

  根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:

  1、通过具体实例理解轴对称与轴对称图形的概念;能够认识轴对称和轴对称图形,并能找出对称轴;知道轴对称与轴对称图形的区别和联系。

  2、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展学生的空间观念和抽象概括能力。

  3、在欣赏现实生活中的轴对称图形之美时,体会轴对称在现实生活中的广泛运用和它的丰富的文化价值;激发学生学习欲望,主动参与数学学习活动。

  三、教学重点、难点:

  依据教学目标,我认为本节课的重点是:轴对称与轴对称图形概念的区别与简单运用。 难点是:轴对称与轴对称图形之间的联系和区别.

  四、教法、学法

  为突出重点、突破难点,使学生能达到本节设定的教学目标,本节课我将引导学生经历观察、操作等活动过程,在活动过程中给学生充分的自主探究交流的空间,让学生进行充分的讨论、交流、合作、大胆表述,让学生真正成为学习的主人。

  五、教学过程:

  根据以上分析,下面我具体谈一谈本节课的教学过程. 探究活动(一):轴对称图形

  1、激趣导入、感受生活(用多媒体演示生活中的有关画面) 图片欣赏(课件):考考你的观察力,这一醒目的标题,激起学生的好胜心,让学生边观察边思考:这些图片有什么共同特征?这一设计遵循教学要贴近生活实际的原则,学生仔细观察后,能发现这些图形都是对称。然后,教师适时提出问题:这些图形是如何对称?怎样才能使对称的部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。使学生感受到生活中处处有数学数学就在我们身边,激发学生学习数学的兴趣。

  2、活动探究形成概念:实验探究:把一张纸对折剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,剪出一个美丽的图案,请同学模仿老师的方法试一试。在欣赏、感知轴对称的基础上,学生肯定急于了解这些图形到底美在哪里。因此我设置了剪纸活动,让学生通过动手实践来创造美,在操作中感知轴对称图形的概念。而后再对比上一活动中部分图案,互相交流发现它们的共同的特征“存在直线——将其折叠——互相重合”。从而合作归纳得出概念,教师板书概念。

  3、联系实际举出几个轴对称图形实例,并说出对称轴(附课件)

  学生根据自己的生活经验,说出符合条件的图形,让学生体会轴对称图形在生活中的广泛存在,生活中的许多轴对称图形,他们不但体现了一种对称美,还蕴涵一定的科学道理,你们知道吗?①表盘的对称保证了走时的均匀性②飞机的对称使飞机能够在空中保持平衡;③人眼睛的对称使人观看物体能够更加准确全面;④双耳的对称能使听到声音具有较强的立体感……

  4、综合练习,发散思维: 这组习题的设计有图形、数学……挖掘了生活右多种图案,加强了学科间的渗透与学科间的整合,让学生在相互争论、补充、交流中寻找知识的答案,体会学习的乐趣。

  探究活动(二):轴对称

  1、动手操作,引入新知

  将一张纸对折后,用针尖在纸上扎出如图所示的图案,观察所得图案。位于折痕两侧的部分有什么关系?再观察教材119页图14.1-3,看看每对图形有什么共同特征?每一个图案是由几个图形构成的?因为学生已经了解到轴对称图形的概念,他们可能会错误地认为两个图形成轴对称和轴对称图形都是对称,没有什么差别。所以先运用动手实践,进行剪纸,借助人的各种感官认识,突出两个图形成轴对称是指“两个图形重合”这一特点。按照“存在直线——将其折叠——两图形重合”这条主线,在老师的引导下,学生得出两个图形成轴对称、对称点的概念。教师板书概念。

  2、巩固练习,应用提高(课件)对所学的知识加以理解和巩固

  3、列举实例,展示才华 举出生活中成轴对称的例子,加深对轴对称的理解。

  活动(三):归纳总结 观察下面两个图形,说说你的发现。 对比轴对称与轴对称图形:(列出表格,加深印象) 轴对称 轴对称 轴对称 轴对称图形 是两个 两个图形之间的关系 是一个 一个图形形本身具有的特性 对折后 两个图形完全重合 翻折后 与图形的另一半完全重合 区别:轴对称指的`是“两个”图形之间的对称关系,而轴对称图形是指“一个”图形具有的对称性质。

  联系:①都是用对折、翻折180°图形重合来定义的;

  ②两者可相互转化,如果把轴对称的两个图形看成是一体的,那么这“一个”图形就是轴对称图形,反过来,如果把一个轴对称图形互相对称的两部分看成是两个图形,那么这“两个”图形是轴对称的。这里渗透整体与部分的辨证关系,进一步发展学生抽象思维能力。

  活动(四):识别图形、感受对称美

  (1)、欣赏图片,体会轴对称所营造的对称美。

  (2)、在计算器显示的数字0至9中,有哪些是轴对称的?许多汉字都是轴对称图形,如:田、日、曰、中、申、王等等。各公司、企业的商标中有许多轴对称实例和轴对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行;各品牌汽车的车标中有许多都是轴对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马;矩形、菱形、正方形、等边三角形等都是轴对称图形;线段也是轴对称图形,线段的垂直平分线就是它的对称轴。

  强调:图形的对称轴是直线,不是线段、射线,而是线段、射线所在的直线。比如学生容易认为角平分线是角的对称轴,等腰三角形底边上的高是它的对称轴,可以很好达到纠正错误的功效。其次掌握角、等腰三角形各有一条对称轴,长方形有两条,等边三角形有三条,正方形有四条对称轴,而圆形是最特殊的轴对称图形,有无数条对称轴,所以它的对称性应用最广泛。这样可以使学生运用图形的对称性解决今后一些相关问题。

  活动(五):动手操作、积极实践、创造图形

  (1)、在给出轴对称图形的一半的基础上,让学生在对称轴的另一边画出另一半,成为一个完整的轴对称图形。由简到难,层层第进。

  (2)、让学生发挥自己的想象力和创造力,用自己的双手创造一个美丽的轴对称图形。

  (这个部分的设计,具有开放性,能充分发挥学生的想象力和创造力、动手能力、使学生成为学习的真正主人,给了学生自我表现、自我创造的空间,有利于培养学生积极的学习态度和学数学的亲切感,也有利于培养学生对美的感受能力。)

  (六):课堂小结

  (1)、本节课学到了哪些知识?

  (轴对称和轴对称图形的定义;轴对称图形的性质;我们所学的多边形中有哪些是轴对称图形;轴对称图形的应用。)

  (2)、谈谈你对本节课学习的体会与困惑。

  (七):作业设计

  发挥你们的想象,利用本节所学的知识,为我们班设计一个班徽,要求设计的图案是轴对称图形或成轴对称,并有一定寓意。这是一道富有开放性、趣味性和挑战性的作业题,给学生提供发挥想象力和创造力的平台,使学生的活动由课内走向生活。

  以上是我对本节课的见解,不足之处敬请各位评委谅解 ! 谢谢!

数学说课稿初中 篇4

  尊敬的各位专家领导:

  大家好!

  今天我说课的题目是人教版数学八年级上册第十章第1节《全等三角形》。下面,我将从教材分析,教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。

  一、教学地位和作用

  全等三角形是《三角形》这一章的主线,在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以培养和提高。因此,全等三角形的教学对全章乃至以后的学习都是至关重要的。为此,我在设计这节课的时候,以学生为主体,让他们全面地参与到学习过程中来,有意识地培养学生的创新意识和实践能力,增强他们学习的能力,让他们充分的掌握该知识点,同时尽量扩充他们的知识范畴。在教学中,采用的是“设疑——实验——发现——总结”的教学方法,并采用“变式练习”方法来提高学习效率。

  二、教学的目标和要求:

  1、知识目标:

  (1)知道什么是全等三角形及全等三角形的对应元素;

  (2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

  (3)能熟练找出两个全等三角形的对应角,对应边。

  2、能力目标:

  (1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;

  (2)通过找出全等三角形的对应元素,培养学生的识图能力。

  3、情感目标:

  (1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

  (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

  三、教学重点:

  1、能准确地在图形中识别出对应边,对应角;

  2、全等三角形的性质和利用其基本性质进行一些简单的推理和计算。

  (解决方法:利用动画的形式让学生直观的识别抽象的图形和知识点从而突出和掌握重点。)

  四、教学难点:

  能在全等变换中准确找到对应边,对应角。(在对应边,对应角的识别,查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点)

  五、教法与学法:

  采用直观,类比的方法,以多媒体为手段辅助教学,引导学生预习教材内容,养成良好的自学习惯,启发学生发现问题,思考问题,培养学生的逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。

  六、教学用具:

  多媒体,剪刀,直尺,硬纸,三角板

  七、教学过程:

  (一)复习导入方面

  从复习全等图形方面入手,展示一些直观的图形,接着创设一个问题情境:如何翻新一个旧的三角形的纸样 让学生动手画图,实验尝试,从而发现其实解决问题的关键是画一个全等的三角形,从而引出课题。通过以上的环节主要是提高学生数学概念的辨析能力和培养学生的动手实践能力。(此环节约用时5分钟)

  (二)新课讲解方面

  1、全等三角形的定义

  通过动画的展示,引导学生观察,分析得出全等三角形的定义(先展示动画)。目的主要在于培养学生的观察分析能力。(此环节学生约用2分钟进行讨论分析)

  2、全等三角形的性质

  以动画的形式,介绍全等三角形的对应顶点,对应边,对应角,并引导学生通过观察分析全等三角形的对应边,对应角之间分别有怎样的关系,从而得出全等三角形的性质。在无形中培养了学生的图形识别能力和直观判断能力。(此环节约用时7分钟)

  3、全等三角形的表示法

  介绍全等符号,说明表示两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。(此环节用时约2分钟)

  4、议一议

  方法:

  (1)小组活动,展示部分小组的解决方案

  (2)动画展示解决方案

  (3)知识点的扩充:动画展示全等三角形的变换识别中对应边,对应角的查找。

  以上环节主要趋于培养学生的团结合作精神,认识团队的力量和开拓学生的思维,扩充学生的知识范畴。(此环节约用时8分钟)

  (三)课堂练习(此环节约用时18分钟)

  用多媒体课件逐一展示练习题目,让学生一一解答。主要是通过练习让学生巩固所学的知识并学会用所学的知识进行推理和解决实际问题。

  (四)课堂小结(此环节约用时2分钟)

  经过以上的教学环节,为了帮助学生系统的掌握所学的知识,达到预期的效果,在这一步骤中,我准备利用提问的形式,师生共同进行小结和归纳。

  (五)作业布置(约用时1分钟)

数学说课稿初中 篇5

  一、教材分析:

  本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

  二、学习任务分析:

  1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。

  2、能将有理数用数轴上的点来表示。

  3、通过观察数轴上的点的位置关系初步比较有理数的大小,并能通过数轴上点的移动说出表示点的数

  三、目标分析:

  1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。

  2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。

  3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。

  4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学

  四、教法选择:

  创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。

  本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。

  概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的"听数学"为"做数学"。

  数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。

  五、教学重难点的确定和突破:

  1、正确画出数轴是本节教学的重点。

  首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。

  2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。

  通过例题要求学生动手操作画出数轴并描述点

  说明:

  (1)可能有不少学生会忘记正方向

  (2)原点左边的数的表识会发生标反的错误。

  (3)数轴上的正方向,同时也表示由小到大的方向。

  (4)单位长度的截取可以是任意长度,不是唯一的。

  (5)数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。

  3、正确画出数轴后,即使点在数轴上的表示,整数的表示学生很容易理解,强调一下,分数和小数的表示是这一节课的难点,首先通过例题:

  通过在数轴上描点:4,-2,-4,5,1/3,0

  先对数进行分类,正数,零,负数,负数在0(既原点)的左边,正数在原点的右边再按整数和分数描点,通过练习巩固能说出数轴上的点表示什么数?

  P23练习中第3题为下节课的内容做下了铺垫,即数的大小比较,这里要求学生能在新排列一下,使学生能了解数轴哂纳感,负数、0、正数,之间的关系。

  4、提高:下列说法正确的是:

  (1)在+3和+4之间没有正数

  (2)在0和—1之间没有负数

  (3)在+1和+2之间有无穷个正分数

  (4)在0、1、和0、2之间没有正分数

  这题通过数轴的直观描述进一步说明数轴上的点与有理数之间的关系,使学生能从感性认识上升到理性认识,进一步提高学生的逻辑思维能力和提高分析问题的能力。

数学说课稿初中 篇6

  各位老师:

  大家好。今天我说课的题目是《平行四边形的性质》,我将从教材分析、学情、教法与学法、教学过程、板书设计和教学反思等几个方面进行说课。

  一、教材分析

  1、教材所处的地位和作用

  《平行四边形的性质》是人教版八年级数学下册第十八章第一节内容它是在学生掌握了平行线、三角形及平行四边形等几何知识的基础上学习的,它不仅是对已学平行线、三角形等知识的综合应用和深化,又是下一步学习矩形、菱形、正方形等知识的基础,起着承上启下的作用。

  2、教学目标

  根据新课标的要求及学生的实际情况,本节我制定了如下目标:

  知识与技能目标:理解平行四边形的定义,探究平行四边形的性质;利用平行四边形的性质进行有关的证明和计算,解决简单的实际问题;

  过程与方法目标:通过观察、猜测、归纳、证明,能运用数学语言合乎逻辑地进行讨论与质疑,发展学生合理的推理意识,培养主动探究的习惯;

  情感态度与价值观目标:通过平行四边形性质的应用过程,培养学生独立思考的习惯,在数学学习活动中获得成功的体验进一步认识数学与生活的密切联系,体验数学来源于生活又服务于生活。

  3、教学重点、难点

  基于以上的分析,我认为本节课的重点是:平行四边形性质的探究与应用;难点是:平行四边形性质的探究,即如何添加辅助线将平行四边形问题转化为三角形问题来解决的思想方法。

  二、学情及教法分析

  初二的学生正处于青春期,主动学习的积极性需要敦促,针对这种情况及本节课的特点,结合我校课题"因材施教,当堂达标"发挥学生主体地位,教师"引导-辅导-指导-讲评-归纳"有目的的辅助学生学习。

  1、利用直观形象的图片、模型,引导学生在观察、操作、猜测、验证与交流等数学活动中发现平行四边形的性质发挥学生的观察能力、联想力,大胆猜测平行四边形的可能性。

  2、注重学生参与,合作交流,让学生在教师的指导下自始至终处于积极思维,主动探究的学习状态,同时借助多媒体进行演示,以增加教学的直观性。

  三、学法指导

  1、观察猜想以学生的观察、猜想为主,要求学生多观察,大胆猜想,主动探索来了解平行四边形的性质。

  2、合作交流采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦。

  四、教学准备

  ppt课件,平行四边形教具

  五、教学过程

  (一)温故思新,情境导入

  首先复习四边形的定义及四边形的有关性质然后课件显示章前图和一些图片提出问题:你能从图中找出我们熟悉的几何图形吗?

  这个问题是校园操场的图片,学生可以见识各种四边形的形状通过查找长方形、正方形、平行四边形、梯形等起到复习的作用,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务

  (二)自主学习,发现问题

  通过观察图片,让学生举出身边存在的平行四边形的例子通过举例,为学生提供参与活动的时间和空间,调动学生的主观能动性,激发求知欲,培养学生形象思维

  然后自学课本83页-84页例1上面的内容,教师出示问题:

  1、通过观察图片,找出图形的共同特征,说出平行四边形的定义?

  2、你会用符号表示一个平行四边形吗?想一想用符号表示时要注意什么问题?

  如图平行四边形ABCD记作:□ABCD(略)

  3、通过观察测量自做的平行四边形你能发现平行四边形的特点吗?

  边:对边平行且相等

  角:对角相等,邻角互补

  4、你能证明你发现的结论吗?

  此环节的设计意图:从实例图片中抽象出平行四边形的几何图形,培养学生的抽象思维,让学生感受到数学与我们生活的密切联系通过自学加深理解,发现问题,提高自主学习能力感受动手测量,猜想的乐趣,培养猜想的意识教师巡视引导,帮助学生自学。

  (三)合作交流,解决问题

  小组合作交流,共同解决自主学习过程中发现的问题:寻找证明的方法当学生有疑惑时,教师巡视辅导:我们目前证明线段、角相等的方法是什么?(利用三角形全等来证明)而图中没有三角形该怎么办?引导学生得出需构造辅助线,将四边形问题转化为三角形问题来解决学生完成证明,归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等,邻角互补并引导学生写出性质的几何语言。

  设计意图:通过交流和引导,明确目前证明线段、角相等的常用方法是证明三角形全等学生完成证明,验证猜想的正确性,让学生感受到数学的严谨性,数学结论的确定性和证明的必要性对平行四边形性质的归纳,培养了学生的合作交流能力和概括能力,突出了教学的重点。

  (四)小组展示,学以致用

  1、小组代表展示交流的结果,通过实物投影讲解平行四边形性质的证明过程培养学生语言组织能力和思维逻辑能力。

  2、探究例1:

  小明用一根36米长的绳子围成一个平行四边形的场地,其中一条边AB长为8米,其他三条边各长多少?

  教师引导学生审题,学生弄清题意后教师示范解题过程,并重点强调解答中平行四边形性质的几何表述。

  设计意图:通过运用平行四边形的性质,学会解决简单的实际问题,让学生认识到数学在现实世界中有着广泛的应用,培养了学生的应用意识。

  (五) 课堂练习,巩固新知

  (1)在□ABCD中,AB=5,BC=3求它的周长。

  (2)一个平行四边形的外角是38,这个平行四边形的每个内角的度数分别是多少?为什么?

  (3)剪两张对边平行的纸条,随意叉叠放在一起,转动其中一张,重合的部分构成了一个四边形线段AB和DC有什么关系?

  练习(2)(3)需说出理由,这对学生的语言表达能力有一定的要求,因此要求学生有条理的写出解题过程。

  (六) 作业设计,强化新知

  1、选择题:

  (1)平行四边形的两邻角的角平分线相交所成的角为()

  A、锐角B、直角C、钝角D、不能确定

  (2)平行四边形的周长为24cm,相邻两边的差为2cm,则平行四边形的各边长为( )

  A、4cm,4cm,8cm,8cm B、5cm,5cm,7cm,7cm C、5.5cm,5.5cm,6.5cm,6.5cm D、3cm,3cm,9cm,9cm

  (3)下面的性质中,平行四边形不一定具有的是()

  A、对角互补 B、邻角互补 C、对角相等 D、对边相等

  2、填空题:

  (1)如图所示,DE∥AB,EF∥BC,DF∥AC,图中有_个平行四边形

  (2)平行四边形的一组对角度数之和为200°,则平行四边形中较大的角为

  3、解答题:

  如图,在□ABCD中,∠A+∠C=160°,求∠A、∠B,∠C,∠D的度数

  设计意图:课堂练习的“及时性”是很重要的。练习的设计目的在于巩固当堂课上的主要内容。

  (六)课堂小结:

  1、这节课你的收获是什么?

  2、还有什么困惑?

  设计意图:通过评价反思引导学生概括本节课学习的内容,对知识进行梳理,这样有利于强化学生对知识的理解和记忆,提高分析和小结的能力。

  六、板书设计

  平行四边形的性质

  定义:两组对边分别平行的四边形 例1:(略)

  记作:□ABCD

  性质:平行四边形的对边相等且平行;

  平行四边形的对角相等,邻角互补

  平行四边形的对角线互相平分

  设计意图:简明扼要,突出了本节教学重点,便于理清本节知识结构,增强教学效果,提高教学效率。

  七、教学反思:

  本节课根据学生的认知规律,本着激发兴趣,积极投入,由易到难,突破难点,突出重点,充分发挥学生的主体地位,使学生在自主探索,积极思考,合作交流的过程中掌握知识,提高技能,这一主体思路下设计的。

  以上是我对本节课的一些初浅的认识和想法,有不足之处,希望各位老师批评指导。

数学说课稿初中 篇7

  各位评委:早上好

  今天我说课的题目是 《有理数》复习课 ,这节课所选用的教材为人教版义务教育课程标准七年级上册教科书。

  一、 教材分析

  1、教材的地位和作用

  本节教材是初中数学七年级上册第一章《有理数》的复习内容,是初中数学的重要内容之一。有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。一方面,数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。另一方面,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数式四则运算工具性内容。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。因此有理数在教材中具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了第一章有理数,对_有理数已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于有理数的知识的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:有理数概念和有理数运算

  难点确定为:负数和有理数法则的理解和运用

  二、 教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1. 知识与技能目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识

  2. 过程与方法目标:培养学生综合运用知识解决问题的能力,提高学生对知识的整合能力和分析能力

  3. 情感态度与价值目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。

  三、 教学方法分析 方法:分层次教学,讲授、练习相结合。

  本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

  2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。

  3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

  学法指导

  “授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。

  四、教学过程分析

  为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

数学说课稿初中 篇8

  一、教材分析:

  1、教材的地位和作用

  一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

  2、 教学目标

  根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在:

  知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

  过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念 。

  情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。

  3、 教学重点与难点

  要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发 。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的难点。

  二、教法、学法:

  因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

  三、教学过程设计

  1、创设情景,引入新课

  因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

  2、 启发探究,获取新知

  通过上述情景分析,让学生小组合作,列出方程。英国一位著名的数学教育心理学家曾 说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。因此,我在课本的基础上,又补充2个实例,而且,补充的例题所列出的方程正好是一个一次项为0,一个常数项为0 的特殊一元二次方程,这为后面概括得出一元二次方程的一般形式作准备。在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征,同时与一元一次方程相比较,找出两者的区别与联系,并类比一元一次方程的概念来得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。因为任何一个一元一次方程都可以化为 “ax+b=c(a≠0)”的形式,由此类比得出一元二次方程的一般形式为“ax2+bx+c=0(a≠0)”;并由一元一次方程项及系数的概念联想得出一元二次方程的项及系数的概念。

  3、 练习反馈,应用拓展

  在这个环节,我遵循巩固与发展想结合的原则,将学生分成小组,以小组竞赛活动的方式对本课知识进行巩固。不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。同时,对概念进行变式应用,可以开拓学生思维,培养学生的创新意识。

  4、 小结归纳,上升理性

  引导学生从以下3个方面进行小结,

  (1)本节课我们学习了哪些知识?

  (2)学习过程中用了哪些数学方法?

  (3)确定一元二次方程的项及系数时要注意什么?以培养学生的归纳、概括能力。

  5、 作业布置

  考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,以便同时兼顾到学有困难和学有余力的学生。

  四、教学评价

  根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。

  五、板书设计

数学说课稿初中 篇9

  一、教材分析(说教材):

  1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。

  2、教学目标:

  1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。

  2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。

  3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。

  4、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用

  下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:

  二、教学策略(说教法):

  1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。

  2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。

  三、教学过程环节一:

  创设情境、导入新课

  通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)

  回顾:

  1、矩形的定义:有一个角是直角的平行四边形叫矩形

  2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。

  3、平行四边形的性质:

  平行四边形的性质

  平行四边形判定

  平行四边形两组对边分别相等

  平行四边形两组对边分别平行

  两组对边分别平行(或相等)的四边形是平行四边形

  平行四边形一组对边平行且相等

  平行四边形对角线互相平分

  一组对边平行且相等的四边形是平行四边形

  对角线互相平分的四边形是平行四边形

  平行四边形两组对角分别相等

  两组对角分别相等的四边形是平行四边形

  环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。

  活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。

  定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)

  环节三:应用辨析,巩固定理

  总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。

  矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:

  一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。

  二、填空题:

  1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。

  2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:

  判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。

  环节四:开放训练,发散思维

  变式训练

  如图,△ABC中,点O是AC边上的一个动点,

  过点O作直线MN∥BC,设MN交∠BCA的

  平分线于点E,交∠BCA的外角平分线于点F。

  (1)求证:EO=EF

  (2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。

  变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。

  环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

  环节六:布置作业,反馈回授通过作业反馈对所学知识的掌握效果,并进一步巩固定理,应用定理。

  以上是我对本节课的理解,不足之处,请各位评委、老师指正。谢谢大家!

【有关数学说课稿初中范文集锦9篇】相关文章:

有关数学说课稿初中范文集锦五篇07-14

有关数学说课稿初中范文八篇06-10

有关数学说课稿初中范文合集九篇07-16

有关数学说课稿初中范文合集六篇06-25

有关数学说课稿初中集锦七篇07-15

有关数学说课稿初中范文集合10篇07-17

有关数学说课稿初中范文集合7篇07-15

有关数学说课稿初中范文汇总九篇06-24

有关数学说课稿初中范文汇编八篇06-21