福州中考数学真题及答案

时间:2024-11-07 19:59:46 偲颖 中考 我要投稿
  • 相关推荐

2024年福州中考数学真题及答案

  在日复一日的学习、工作生活中,我们经常接触到真题,真题有助于被考核者了解自己的真实水平。相信很多朋友都需要一份能切实有效地帮助到自己的真题吧?下面是小编整理的2024年福州中考数学真题及答案,欢迎阅读与收藏。

2024年福州中考数学真题及答案

  真题及答案1:

  小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。甲数是____。

  答案:93

  1994年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。在小组赛中,这4支队中的每支队都要与另3支队比赛一场。根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得1分。已知:

  (1)这4支队三场比赛的总得分为4个连续奇数;

  (2)乙队总得分排在第一;

  (3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。

  根据以上条件可以推断:总得分排在第四的是____队。

  答案:丙

  我们规定两人轮流做一个工程是指,第一个人先做一个小时,第二个人做一个小时,然后再由第一个人做一个小时,然后又由第二个人做一个小时,如此反复,做完为止。如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?

  解:两次做每人所花时间:甲乙

  5小时4.8小时

  4.6小时5小时

  ∴甲做0.4小时完成的工程等于乙做0.2小时,乙的效率是甲的2倍,甲做5小时完成的任务乙只要2.5小时就能完成。

  ∴乙单独完成这个工程要2.5+4.8=7.3(小时)

  甲、乙两地相距120千米,客车和货车同时从甲地出发驶向乙地,客车到达乙地后立即沿原路返回,在途中的丙地与货车相遇。之后,客车和货车继续前进,各自到达甲地和乙地后又马上折回,结果两车又恰好在丙地相遇。已知两车在出发后的2小时首次相遇,那么客车的速度是每小时多少千米?

  解:(示意图略)

  第一次相遇,两车合走2个全程,第二次相遇,两车又比第一次相遇时多走2个全程,∴客车、货车第一次相遇时各自走的路程与第一次相遇到第二次相遇时各自走的路程分别相等。两次相遇都在丙点,设乙丙之间路程为1份,可得甲丙之间路程为2份,∴乙丙间路程=120÷3=40,

  客车速度为(120+40)÷2=80(千米/小时)

  真题及答案2:

  一、选择题

  1.T1=,T2=,T3=,则下列关系式正确的是()

  A.T1,

  即T2bd

  B.dca

  C. dba

  D.bda

  【解析】 由幂函数的图象及性质可知a0,b1,0ca.故选D.

  【答案】 D

  3.设α∈{-1,1,3},则使函数y=xα的定义域为R且为奇函数的所有α的值为()

  A.1,3 B.-1,1

  C.-1,3 D.-1,1,3

  【解析】 y=x-1=的定义域不是R;y=x=的定义域不是R;y=x与y=x3的定义域都是R,且它们都是奇函数.故选A.

  【答案】 A

  4.已知幂函数y=f(x)的图象经过点,则f(4)的值为()

  A.16 B.2

  C. D.

  【解析】 设f (x)=xα,则2α==2-,所以α=-,f(x)=x-,f(4)=4-=.故选C.

  【答案】 C

  二、填空题5.已知n∈{-2,-1,0,1,2,3},若nn,则n=________.

  【解析】 ∵--,且nn,

  ∴y=xn在(-∞,0)上为减函数.

  又n∈{-2,-1,0,1,2,3},

  ∴n=-1或n=2.【答案】 -1或2

  6.设f(x)=(m-1)xm2-2,如果f(x)是正比例函数,则m=________,如果f(x)是反比例函数,则m=________,如果f(x)是幂函数,则m=________.

  【解析】 f(x)=(m-1)xm2-2,

  若f(x)是正比例函数,则∴m=±;

  若f(x)是反比例函数,则即∴m=-1;

  若f(x)是幂函数,则m-1=1,∴m=2.

  【答案】 ± -1 2

  三、解答题

  7.已知f(x)=,

  (1)判断f(x)在(0,+∞)上的单调性并证明;

  (2)当x∈[1,+∞)时,求f(x)的最大值.

  【解析】 函数f(x)在(0,+∞)上是减函数.证明如下:任取x1、x2∈(0,+∞),且x10,x2-x10,x12x220.

  ∴f(x1)-f(x2)0,即f(x1)f(x2).

  ∴函数f(x)在(0,+∞)上是减函数.

  (2)由(1)知,f(x)的单调减区间为(0,+∞),∴函数f(x)在[1,+∞)上是减函数,

  ∴函数f(x)在[1,+∞)上的最大值为f(1)=2.

  8.已知幂函数y=xp-3的图象关于y轴对称,且在

  (0,+∞)上是减函数,求满足(a-1)(3+2a)的a的取值范围.

  【解析】 ∵函数y=xp-3在(0,+∞)上是减函数,

  ∴p-30,即p3,又∵p∈N,∴p=1,或p=2.

  ∵函数y=xp-3的图象关于y轴对称,

  ∴p-3是偶数,∴取p=1,即y=x-2,(a-1)(3+2a)

  ∵函数y=x在(-∞,+∞)上是增函数,

  ∴由(a-1)(3+2a),得a-13+2a,即a-4.

  ∴所求a的取值范围是(-4,+∞).

【福州中考数学真题及答案】相关文章:

2016福州中考英语真题及答案02-24

中考化学真题练习及答案12-16

2016年广东中考语文考试真题及答案09-12

考研英语真题及答案09-25

重点中学小升初数学真题答案02-25

2017小升初数学几何真题及答案02-24

2017年中考英语时态题练习及答案「历年真题」07-24

福建福州2016年中考数学试题及答案02-25

考博英语真题及答案10-11