数学学习方法

时间:2025-09-17 10:00:30 学习方法

数学学习方法大全(15篇)

  无论是在学校还是在社会中,需要学习的内容越来越多,同时,学习方法也引起了大家的重视。有好的学习方法才能更好的学习。那么,都有哪些实用的学习方法呢?下面是小编精心整理的数学学习方法,仅供参考,欢迎大家阅读。

数学学习方法大全(15篇)

数学学习方法1

  在数学学习中,数学概念的学习毫无疑问是重中之重,概念不清,一切无从谈起。那么对干巴巴的数学概念如何学好呢。为此,提供一套行之有效的数学概念学习法。具体地说,有以下几种方法:

  一、温故法

  学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。

  二、操作法

  对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的`发生和发展过程。

  三、类比法

  这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。

  四、喻理法

  为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念.

  五、置疑法

  这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。

  六、创境法

  如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。

数学学习方法2

  1、主动预习

  预习是学习的第一步,通过对新知识的预习,可以有效提高学习效率,培养自学能力。因此,学生需要养成主动预习的习惯,学会运用已学知识去独立探究新知识。学生需要在老师的引导下学会学习,从预习中发现新的问题,并在课堂上有针对性的听讲,从而提高学习效率,达到学好数学的目的。

  2、总结规律

  很多数学问题是有一定规律的,因此,在学习的时候,要学会总结规律,从而掌握类似题型的`解题方法。在做完题目后,不要直接跳到下一道,而是要对这道题目进行思考分析,从而对解题思路进行总结。

  在解题的时候,要对题目进行思考,了解题目考察的知识,解题的关键和其他解法,从而提高自身的解题能力和应变能力,锻炼数学思维能力。

  3、关于作业

  作业能够有效巩固所学的知识,从而加深对知识的理解和运用。但是很多学生并不能正确对待作业,反而觉得这是负担,从而在做作业的过程中抱有消极的心态。这就要求学生转变心态,避免粗心、求快的错误习惯,认真完成作业。

数学学习方法3

  小学一年级数学学习方法有哪些

  首先,小学一年级的孩子要注重课堂效率,在老师课程讲课的过程中需要集中注意力,重点记忆老师所讲的课程内容,最好我们可以准备好各科科目的笔记本,把各科重点知识点记在笔记本上,以便于课后更好地进行课程复习。

  一年级小学生的学习上需要做好课前预习和课后复习工作,这两项内容也是非常重要的,对于提高数学成绩,提高上课效率有着非常关键的影响,在课前预习时我们可以把一些重要的知识点,不懂的问题画出来,在上课听讲时有重点地去听讲,提高上课效率,课后复习也能够帮助小学生更好地巩固所学知识,让知识点的记忆上更扎实一些。

  对于小学一年级数学的学习上,作业的完成度已经习题的训练上也是非常有必要的`,小学生应该注重做好老师留下的数学作业,针对作业题目上有更深度的思考,还要进行大量的数学习题,这样也能够通过习题训练进行查漏补缺,不断提高小学生的数学成绩。

  小学数学地 学习上一定要勤思考,对于数学学科的学习上思考是非常重要的,要要善于提出问题,这样才能够更好地开拓小学生本身的数学的思维,让小学生在数学方面头脑更加灵活。

  小学生怎么提高数学成绩

  小学数学成绩的提高上需要有一个学习数学科目的正确态度和心态,要对数学的学习上感兴趣才能帮助成绩上迅速提升,我们可以选择做一些数学相关的游戏吸引小学生,使其对于学习数学上感兴趣。

  小学生要养成良好的数学学习习惯,像是制定一定的数学学习计划,每天按照计划完成自己的要做的事,在计划的制定上我们可以规定每天要做多少题,完成哪些训练等等,都是非常有助于成绩提升的。

  小学数学的学习上可以多做题,接触不同的数学题的类型,帮助小学生更好地开拓数学思维,让小学生在数学学习上有更加深入性的了解。

数学学习方法4

  小学五年级学生数学的学法指导

  1、指导“听“。

  数学教学中指导学生听课,首先应从培养学生的数学兴趣入手来集中学生的注意力,激活他原有的认知结构,专心听讲;其次,要指导学生会听,主要应注意听老师每一节课开始所讲的教学内容、重点和学习要求,注意听教师在讲解例题时关键部分的提示和处理,注意听教师对概念要点的剖析和概念体系的串连,注意听教师每节课的小结和对某些较难习题的提示。

  2、指导“读”。

  这里所讲的读是指阅读数学课本,主要是指导学生从各个方面去深入理解课本内容。①读标题。要求学生细细体会标题,能提纲挈领地抓住教材的主要内容;②读例题。在预习时应要求学生带着问题读例题,并初步领会解题方法;③读插图。教师应指导学生认真阅读课本上的插图,使学生更具体、更形象、更准确地理解文字的内容;④读算式。应要求学生准确地读出算式,弄清算式的意义;⑤读结语。要求学生对教材的结语逐字逐句地理解分析,以便准确地把握。

  3、指导“写”。

  数学教学中,对学生的学法指导,教师一是要指导学生学会做学习笔记;二是要指导学生将数学语言转化为数学符号,数学符号是数学语言的重要表现形式,它不仅简洁美观,而且便于记忆和使用;三是熟练掌握数学中常用的书写格式;四是会作图,作图包括根据条件作图,解题时将文字语言转化为直观图形。教师应着力于以下四点:一是从学生思维的“最近发展区”入手引导学生积极主动地思考;二是善于变式思考。变式是数学的一大特点,对于某一个问题,改变结论,结论将如何,改变结论,条件又将如何,在变中求活,在变中找方法;三是比较归纳,将数学知识系统化;四是教师在教学过程中,要善于暴露思维过程,留下一定的思维时间和空间,让学生“思在知识的转折点,思在问题的疑难处,思在矛盾的解决上,思在真理的探求中。”这样,就能使学生学会并掌握基本的数学思想方法,达到启思悟理,融会贯通。

  再次数学学法指导应指导学生在“说、看、练、记”上着力,掌握数学学习的方法。

  1、启发“说”

  首先启发学生说思路,说思维过程。课堂上要让每个学生都有说自己想法的机会,可以让学生根据某一问题,独自小声说,同桌之间练习说,四人小组互相说,等等。通过说,训练思维方法;其次,引导学生用简明、准确、规范的数学用语,完整地回答问题,在引导学生观察、分析、推理、判断后,启发学生用自己的话总结、概括出定义、法则或公式,使感性认识上升为理性认识。

  2、指导“看”。

  帮助学生选准观察点,进行有目的地观察,在看中辨析、思考,增强观察力,激发求知欲。

  3、指导“练”。

  通过指导练习,强化“做”的过程。在练习中,应突出练习的目的性、启发性、针对性、多样性,促使学生系统地探索新知识,有效地解决新问题,以达到会、熟、活。

  4、指导“记”

  要想学好数学,对老师所讲的概念、定理、公式、法则、重要结论、解题规律都必须记住。因此,在数学教学中要结合教学内容向学生传授记忆的方法。

  ①理解记忆法。很多数学知识,光靠死记硬背不容易记住。如果让学生在理解的基础上记忆,就不容易忘记了;

  ②分类记忆法。许多数学知识之间往往有着密切的内在联系,如果我们对它们进行恰当的分类,就可以形成一个知识网,记住了一个就记住了一类;

  ③比较记忆法。对于一些容易混淆的概念,通过比较弄清它们的联系与区别,把两个概念组成一对进行记忆,也不容易忘记。另外,数学中所涉及到的数学学习方法还应是对大多数学生适用的“通法”,而不能是适用于少数个别学生的'特殊方法。总之,学法指导应由“学会”向“会学”发展,从根本上让学生掌握学习方法,形成学习的能力,让学生终身受益。

  小学六年级数学学习方法

  1、利用生活中的数学体现,激发孩子内在的学习动机

  数学贯穿与日常生活,家长可在与孩子的日常生活接触中观察孩子的喜好,融入数学思维引导孩子主动学习。并有意识地进行思考、猜想、讨论与动手动脑等,利用孩子感兴趣喜欢的元素作为数学思维的承担载体,激发孩子内在的学习动机,使孩子感受到相互学的重要和有趣,使他们对数学学习更加主动积极。

  2、抓住数学敏感期,循序渐进,发展数学思维

  研究证明,儿童在4岁前后会出现一个“数学敏感期”。他们会对数字概念,比如数、数字、数量关系、排列顺序、数运算、形体特征等突然发生极大兴趣,对它们的种种变化有着强烈的求知欲,这标志着孩子的数学敏感期到来了。错过了这个“数学敏感期”,有的人一生都害怕数学,一提数学就头疼。

  而在面对“数学”这种纯抽象概念的知识时,让孩子觉得容易的学习方法,也只有以具体、简单的实物为起始。由感官的训练,从“量”的实际体验,到“数”的抽象认识。自少到多,进入加、减、乘、除的计算,逐渐培养孩子的数学心智和分析整合的逻辑概念。让孩子在亲自动手中,先由对实物的多与少、大和小,求得了解,在自然而然地联想具体与抽象间的关系。

  3、讨论合作,共同发散数学思维

  每个孩子都有其独特的天马行空的思维能力,在学校学习中,就可以借助这种思维的差异性,让孩子参与到团队合作中来,共同堆一座积木或进行折纸游戏,共同探讨知识交流合作,利用空间思维与多彩丰富的具象结合,在互助交流中动手动脑、发散思维的同时建构自己的经验和知识,参与到团队合作中来,有助于语言能力的增强,形成自己的认知结构和思维系统。

  孩子在小时候以形象思维为主,喜欢把一切抽象问题都形象化,但这不利于抽象思维的培养,那么培养孩子良好的思维习惯就很重要,具体到数学思维,就是要培养孩子及时总结分析问题和解决问题的方法,按步思维,有意识的逐步培养孩子的抽象思维能力和思维品质,加强训练。

  六年级数学学习方法

  小学数学学习必须关注孩子创新意识的培养和创新能力的发展。从某种意义上讲,养成创造性学习的习惯,比获得了多少知识更重要。这需要从以下几方面做起:

  1、培养学生善于质疑的习惯。

  在参与、经历数学知识发现、形成的探究活动中,善于发现,提出有针对性、有价值的数学问题,质疑问难,是创造性学习习惯培养的一个重要方面。在数学学习过程中,要逐步培养学生自主探究、积极思考、主动质疑的学习习惯,让他们想问、敢问、好问、会问。

  质疑习惯的培养,也可从模仿开始,老师要注意质疑的“言传身教”,教给学生可以在哪儿找疑点。一般来说,质疑可以发生在新旧知识的衔接处、学习过程的困惑处、法则规律的结论处、教学内容的重难点及关键点处,概念的形成过程中、解题思路的分析过程中、动手操作的实践中;还要让学生学会变换角度,提出问题。

  2、培养学生手脑结合,注重实践的习惯。

  心理学研究告诉我们,小学生的思维正处在具体形象思维向抽象思维、逻辑思维发展的过渡阶段,特别是低年级儿童,他们的思维仍以具体形象思维为主要形式,他们的抽象思维需要在感性材料的支持下才能进行,因此小学数学教育必须重视培养学生动手、动脑、动口的良好习惯,使学生通过看一看、摸一摸、拼一拼、摆一摆、讲一讲来获取新知。

  例如在学习“角的初步认识”时,角的大小与两边的长短有没有联系?这个问题就可以通过操作自制的活动角,边操作、边观察、边讨论,从而得出正确的结论。开展类似的教学活动,就能使学生养成手脑结合,勤于实践的学习习惯。

  3、培养学生的良好思维习惯。

  培养学生多角度思考和解决问题的习惯,培养他们思维的多向性和灵活性。通过“你能想出不同的方法吗?”“你还能想到什么?”“你有独特的见解吗?”你能从另一个角度看问题吗?“等言语,启发和诱导,鼓励学生敢想、敢说,不怕出错、敢于发表不同的见解,培养学生的创新思维习惯。

数学学习方法5

  1、“读法”指导

  初一学生往往不善于读数学书,在读的过程中,沿用小学的死记硬背的方法。这样既不能读懂,更无法读透,且使他们的自学能力和实际应用能力得不到很好的训练。那么如何指导学生去读数学书呢?平时应要求学生做到:一是粗读。先粗略浏览教材的枝干,并能粗略掌握本章节知识的概貌,重、难点;二是细读。对重要的概念、性质、判定、公式、法则、思想方法等反复阅读、体会、思考,领会其实质及其因果关系,并在不理解的地方作上记号(以便求教);三是研读。要研究知识间的内在联系,研讨书本知识安排意图,并对知识进行分析、归纳、总结,把书本读“薄”,以形成知识体系,完善认知结构。

  2、“听法”指导

  “听”是直接用感官去接受知识,而初一学生往往对课程增多、课堂学习量加大不适应,顾此失彼,精力分散,使听课效果下降。因此应指导学生在听课的过程中注意做到:(1) 听每节课的学习要求;(2) 听知识的引入和形成过程;(3) 听懂教学中的重、难点(尤其是预习中不理解的或有疑问的知识点);(4)听例题关键部分的提示及应用的数学思想方法;(5) 听好课后小结。

  3、“思法”指导

  “思”指学生的思维。数学是思维的体操,学习离不开思维,数学更离不开思维活动,善思则学得活,效率高;不善思则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。初一学生的思维往往还停留在小学的.思维中,思维狭窄。因此,在对他们进行指导时,应使他们在学习中做到:(1)敢思、勤思、随读随思、随听随思。在看书、听讲、练习时要多思;(2) 善思。会抓住问题的关键、知识的重点进行思考;(3) 反思。要善于从回顾解题策略、方法的优劣进行分析、归纳、总结。

  4、“问法”指导

  孔子曰:“敏而好学,不耻下问。”

  爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。但初一学生往往不善于问,不懂得如何问。因此,教师在平时教学中应教给学生一些问问题的基本方法,主要有:(1) 追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;

  (2) 反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;(3) 类比提问法。根据某些相似的概念、定理、性质等的相互关系,通过比较和类推提出问题;(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。此外,还应要求学生在提问时不仅要问其然,还要问其所以然。

  当然,平时教师在教学中,还应因人而异地采用科学的教学方法,促使学生乐问、敢问、勤问、善问。

  5、“记法”指导

  很大一部分学生认为数学没有笔记可记,有记笔记的学生也是记得不够合理。通常是教师在黑板上所写的都记下来,用“记”代替“听”和“思”。因此,指导学生作笔记时应做到以下几点:(1)在“听”,“思”中有选择地记录;(2) 记学习内容的要点,记自己有疑问的疑点,记书中没有的知识及教师补充的知识点;(3) 记解题思路、思想方法;(4)记课堂小结。并使学生明确笔记是为补充“听”“思”的不足,是为最后复习准备的,好的笔记能使复习达到事半功倍的效果。

数学学习方法6

  《初一代数》(上册)的数学内容从整体上看主要是解决从算术进展到代数这个重要的基本课题。我们认为主要体现在以下两个方面。一方面是“数集的扩充”,即引进负数,把原有的算术数集合扩充到有理数集合;另一方面是解代数方程的原理和方法,即从用字母表示数,到用“列方程”取代“列算式”解应用问题。

  数集的每一次扩充都是解决实际问题和解决数学自身矛盾的需要。有理数概念的建立,有理数性质的介绍,有理数运算法则的规定,这一切都为同学们进一步学习代数做了必要的准备。同学们在学习有理数一章时,希望大家要有意识地培养自己逻辑推理能力,使自己会观察、比较、分析、综合、抽象和概括,会用归纳和类比的方法进行推理。另外要特别重视提高运算能力,有过硬的运算基本功。

  为此,不仅能根据法则、运算规律、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件,使运算“合理、简捷、准确”。为了解决用算术方法解应用题的局限性,人们想出用字母表示未知数,把问题中的相等关系平铺直叙地用代数方程式表达出来。由于表示未知数的字母也是数,因此,它们也可以按照数的运算的通性、通法进行运算,从而求得未知数所应有的值。同学们要充分注意这一“历史性”的突破。为此,不仅要熟练掌握含数字的算术的变形和计算,更要切实掌握好含字母的代数式(目前主要是整式)的变形和计算,解方程的基本方法和步骤,这一切都是为列方程解应用题而展开的。通过列方程解应用题的学习,体会如何把实际问题抽象成数学问题,用方程思想处理数学问题,形成用数学的意识,培养我们自己分析问题和解决问题的能力。要不断培养学习数学的兴趣和求知欲望

  有许多同学在小学都曾有过这样的感受,每当你认识了一个数学规律,解决了一个较难的应用问题,成功的喜悦是无法用别的东西来替代的,它激励你的学习热情和好奇心,越学越爱学。学习的兴趣和求知欲是要不断地培养的,况且同学们刚刚迈进“数学王国”的大花园里,许多奥妙无穷的数学问题还等着你们去学习、观赏、研究。:傻做题不如巧做

  一、制定切实可行的计划,家长与孩子一起讨论,合理的罗列出完成某些要事的时间段及要达到的目标。

  二、数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为基本问题;要反思错误,找出产生错误的原因,订出改正的措施。

  三、数学不等于做题,千万不要忽视最基本的概念、公理、定理和公式,寒假里要把已经学过的教科书中的概念整理出来,通过读一读、抄一抄加深印象,特別是容易混淆的概念更要彻底搞清,不留隐患。

  其次,数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,注重发现题与题之间的内在联系,要“苦做”更要“巧做”,绝不能“傻做”。在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到“触类旁通”的境界。此外,大家在平时做题中就要及时记录错题,还要想一想为什么会错、以後要特別注意哪些地方,这样就能避免不必要的失分。如果试题中涉及到你的薄弱环节,一定要通过短时间的专题学习,集中优势兵力,攻克难关,別留下陷阱。:学好数学的几点注意事项

  1、课前认真预习。预习的目的`是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15—20分钟。在时间允许的情况下,还可以将练习册做完。

  2、让数学课学与练结合。在数学课上,光听是没用的当老师让同学去黑板上演算时,自己也要在草稿纸上练。如果遇到不懂的难题,一定要提出来,不能不求甚解。否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。

  3、课后及时复习。写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题。可以根据自己的需要选择适合自己的课外书。其课外题内容大概就是今天上的课。

  4、单元测验是为了检测近期的学习情况。其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好。老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。

数学学习方法7

  一、主动预习

  预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

  因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  二、主动思考

  很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!

  三、善于总结规律

  解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:

  (1)本题最重要的特点是什么?

  (2)解本题用了哪些基本知识与基本图形?

  (3)本题你是怎样观察、联想、变换来实现转化的?

  (4)解本题用了哪些数学思想、方法?

  (5)解本题最关键的一步在那里?

  (6)你做过与本题类似的题目吗?在解法、思路上有什么异同?

  (7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?

  把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

  四、拓宽解题思路

  数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。

  五、必须要有错题本

  说到错题本不少同学都觉的自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了,因此,错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。

  六、“1×5”学习法

  “1×5”学习法,就是做一道题,要从五个方面思考,这点可以结合前面说到的“总结规律”“拓展思路”。五个方面分别为:

  ①这道题考查的知识点是什么。

  ②为什么要这样做。

  ③我是如何想到的。

  ④还可以怎样做,有其它方法吗?

  ⑤一题多变看看它有几种变化的形式buy

  千万不要觉得麻烦,学习习惯的培养最难的就是最初的一个月,这就像火箭升空一样,最难的就是点火起飞阶段,所以,一旦养成了良好的数学学习习惯和思维方式,在今后的学习中就会非常的轻松。

  七、独立完成作业

  现在很多学生用一些APP来帮助写作业,找个照片就有答案,或者是抄袭其他同学的作业,这可以分两种情况来说,一种是为了图快、求速度,如果经常这样会养成不良的审题习惯,容易走马观花、粗心大意。还有一种是为了图方便,这会导致同学们养成“怕麻烦”的心理,一旦题目有些难度,自己就开始心烦意乱,思路模糊,因此,大家一定要养成良好的独立完成作业的习惯。

  中学生如何做好课前预习,预习的五大技巧

  1、安排好课前预习的时间

  预习周期不要提前太长时间,有的同学可能要学第一课,但是都预习到了第十课,这样的.预习是没有效果的,因为时间一长,此前预习的知识很容易忘记,预习不是走马观花,不是拿着课本浏览一下就结束了,如果这样预习是起不到任何作用的。预习一般安排在每天完成作业以后,开始预习第二天要学的课程,这样既能与之前学的内容有很好的衔接,又能帮助记忆,更有充足的时间进行整理、准备。

  2、预习要讲究顺序

  就某一学科来说,预习不是拿过课本不管是哪里就开始学习,预习也要按照课本的次序进行预习,这样不仅更有条理性,而且容易形成记忆链条,即知道了一个知识点就很自然的想到另一个知识点。

  就学科之间来说,首先要学习的是自己的薄弱学科,这样可以有充足的时间进行预习,有很多同学喜欢先预习优势科目,把自己的弱项留在最后,这样就会更加的疲劳,而且时间长了会形成恶性循环,越难的越不想学,最终导致严重偏科。

  3、课前预习要有重点

  课前预习要知道什么是重点要学的,什么可以一带而过,切记不要眉毛胡子一把抓,觉得这个也重要,那个也关键,一定要有舍有得。预习的时候,我们可以看一下学过的知识,有助于串联新知识,对于掌握的可以一带而过,要重点预习没学的或者是自己没有掌握的知识。

  此外,预习不是老师讲课,没必要做到每个知识点都要掌握,如果预习花费太多精力和时间,那课堂上就会很无聊,浪费了宝贵的课堂时间,所以预习只要找到学习的重点即可,带着疑问去听讲,效果会更好。

  4、预习要做笔记

  都说“好记性不如烂笔头”,把自己预习的成果有条理的纪录下来,哪些疑问需要老师解答,哪些知识需要重点掌握,都用笔写下来,在课堂上拿着预习的笔记,就会有重点的去听讲,不仅能够加深记忆,还能够提高学习效率,一举多得。

  5、预习也要形成习惯

  预习的效果可能短时间内看不出来,不是说我预习了一节课,下次就能考高分,预习也是一个长期积累的过程,时间长了你会发现,你的学习效率要比别人的高,而且你的时间也非常的合理、轻松,这就是形成预习习惯的好处。

  课前预习五大技巧就为您介绍到这里,预习是主动学习的一种表现,如果能够养成良好的预习习惯,那么学习会更加的主动、积极,效果也会特别的好。

数学学习方法8

  教学质量的高低,很大程度上取决于学生的学习态度和学习方法。特别是学生进入中学后,科目增加、内容拓宽、知识深化,尤其是数学从具体发展到抽象,从文字发展到符号,由静态发展到动态……而学生没有自觉摄取知识的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,慢慢地失去学习信心和兴趣,陷入厌学的困境。这也往往是初二阶段学生明显出现“两极分化”的原因。

  初一新生从小学到初中环境变化了,学生和老师都有一些新面孔,就是老师的授课方法也会有所不同,需要有一个适应期。因此重视对初一学生数学学习方法的指导是非常必要的。良好的学习方法需要教师在授课中潜移默化地加以培养,对学生学习的几个环节(预习、听课、复习巩固与作业、总结),从宏观上对学习方法分层次、分步骤指导。

  一、从小学到初中是人生的转折点,学习上也是如此,作为教师一定要为学生把好这个关

  初一学生往往不会预习,他不知道预习起什么作用,草草看一遍,流于形式。因此在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,了解本节知识的梗概。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,对难以理解的概念作出记号,以便带着疑问去听课。从而使学生化难为易、变被动学习为主动学习,逐渐培养学生的.自学能力。

  二、听课方法的指导要处理好“听”“思”“记”的关系

  “听”是直接用感官接受知识,应指导学生在听的过程中注意:首先要静下心来听每节课的学习要求;掌握知识的引人及知识形成过程;掌握重点、难点,剖析预习中的疑点;听例题解法的思路和数学思想方法的体现;听好课后小结。教师讲课一定掌握最佳讲授时间,使学生听之有效。

  “思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:多思、勤思;深思、善于大胆提出问题;树立批判意识,学会反思。可以说“听”是“思”的基础,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。

  “记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:作笔记服从听讲,要掌握记录时机;记要点、记疑问、记解题思路和方法;记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。

  掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。课堂学习指导是学法中最重要的。同时还要结合不同的授课内容进行相应的学法指导。

  三、深后复习巩固及完成作业方法的指导

  初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。

  为此在这个环节的学法指导上要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理(记忆方法有类比记忆、联想记忆、直观记忆等)。然后独立完成作业,解题后再反思。在作业书写方面也应注意”写法“指导,要求学生书写格式要规范、条理要清楚。初一学生做到这点很困难。指导时应教会学生如何将文字语言转化为符号语言;如何将推理思考过程用文字书写表达;正确地由条件画出图形。这里教师的示范作用极为重要,开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯,这对今后的学习和工作都十分重要。

  四、总结方法的指导

  在进行单元小结或学期总结时,初一学生容易依赖老师,习惯教师带着复习总结。我认为从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复习总结的途径。

  要做到一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法。应该说学会总结是数学学习的最高层次。

数学学习方法9

  小学一年级数学学习方法

  第一、认真听老师讲课。这是我取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差,更切忌一边讲话一边听讲。其次要专心凝听老师讲的每一个字,因为数学是以严谨著称的,一字之差就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。一次老师讲了一个高难度的几何题,我一时没有听懂,多亏我记下了这道题以及解法,回家后仔细琢磨,终于理解透了,以至在一次竞赛中我轻而易举地解出了类似的一道题,获得了宝贵的10分。上课还要积极举手发言,举手发言的好处可真不少!①可以巩固当堂学到的知识。②锻炼了自己的口才。③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、眼到、耳到、心到。

  第二、课外练习。孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。我很注意解题的精度和速度。精度就是准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。我经常是这样做的,在开始做作业时定好闹钟,放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。

  第三、复习、预习。对数学的复习,预习我定在每天晚上,在完成当天作业后,我将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在床上,脑海里再像看电影一样将老师上课的过程“看”一遍,如果有什么疑难,我立即爬起来看书,直到搞懂为止。每个星期天我还作一星期功课的小结复习、预习。这样对学数学有好处,并掌握得牢固,就不会忘记了。

  第四、提高。在完成作业和预习、复习之后,我就做一些爬坡题。做这类题,尽可能自己独立思考,努力找出隐藏的条件,这是解题的关键。如果实在想不出来就需要看一看参考书,以及请教师长和同学。总之,要做到多看、多做、多问、虚心、勤奋,保持积极向上的精神这才是关键的关键。

  小学一年级数学知识点

  第一单元:准备课

  1、数一数

  数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

  2、比多少

  同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

  比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

  比较两种物体的多或少时,可以用一一对应的方法。

  第二单元:位置

  1、认识上、下

  体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

  2、认识前、后

  体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

  同一物体,相对于不同的参照物,前后位置关系也会发生变化。

  从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

  3、认识左、右

  以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

  要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

  第三单元:1-5的认识和加减法

  一、1--5的认识

  1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。

  2、1—5各数的数序

  从前往后数:1、2、3、4、5.

  从后往前数:5、4、3、2、1.

  3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的'位置,认真、工整地进行书写。

  二、比大小

  1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。

  2、填“>”或“<”时,开口对大数,尖角对小数。

  三、第几

  1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。

  2、区分“几个”和“第几”

  “几个”表示物体的多少,而“第几”只表示其中的一个物体。

  四、分与合

  数的组成:一个数1除外分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.

  把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。

  五、加法

  1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。

  2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。

  六、减法

  1、减法的含义:从总数里去掉减掉一部分,求还剩多少用减法计算。

  2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。

数学学习方法10

  一、高中学生的心理特征与数学学习对策

  1、高中数学课程的特点

  高中一年级要学集合、逻辑、函数、数列、三角与平面向量。这些内容中理论成分所占的比重与初中数学相比空前增加。无论是概念的抽象性,论证的逻辑性,方法的灵活性,还是应用广泛性与初中数学相比,对思维水平的要求可以说是“爬上了一个陡坡”。高二、高三年级要学不等式的系统理论、解析几何、立体几何、排列组合、概率统计、极限、导数与复数这些内容与高一数学相比,理论成分更多,方法论成分增加的力度更大。基于这一特点,学习高中数学首先要全面、系统、深刻地掌握好数学理论的来龙去脉,同时又要分析好、理解好每个数学知识点的丰富内涵,吃透它的思想实质,有了这样一个踏实的理念基础,解题时就有可能做到“用理论思维”,即用所学过的数学理论与方法去观察,去分析,去解决面临的问题,这是学好高中数学的根本方法,作为教师,就应该认真去研究怎样教学生吃透理论,怎样教学生“用理论思维”,并且引导学生不断地总结这方面的经验,否则必然会陷入盲目性,去搞什么“题型教学”,甚至会滑到“题海教学”的边沿,这将会给学生带来严重的后果。高中三年是人体各器管剧烈发展、变化的三年,心理特征的发展变化也是如此。

  2、高一年级学生的心理特征与学习对策

  心理学家的研究告诉我们:高中一年级是个转折点:同学们的抽象思维慢慢开始从经验型占主导向理论型占主导转变,并且将迅速进入理论型发展的关键期,这时同学们遇事开始有了“个人的见解”,自主意识和独立解决问题的能力显著增强,感觉自己“真正长大了”。

  这时,一个值得大家十分关注的问题是:教育研究表明,在关键期如果所学的知识具有一定的挑战性(挑战就是激励),并且教育与训练的方式得当,思维水平就会得到“神奇般地发展”!反之,如果教育内容乏味,措施无力或不当,就会贻误甚至摧残发展,给学生留下终生的遗憾。长期的教学实践和系统的学法教育的研究,还使我们获得了一个非常重要的发现:一个高中生三年的发展,不论是知识的获得,个性的陶冶,还是能力的提高,都遵循这个规律—“三年发展看高一,高一关键在一(上)”这就是说,在高中一年级上学期所形成的心理态势、学习方式、思维习惯和知识结构将会对高中三年的发展产生重大的甚至是决定性的影响,高一(上)结束时所产生的优秀生、中等生和后进生有相当大的比例将一直持续到高中毕业甚至大学以后,这一发现进一步加强了高一年级特别是高一上学期应该是“关键期中的关键期”这一认识。反面的教训更应引起我们警觉:有相当多的中学生,正是由于高中一年级没有实现好这个转折,数学学习方法与习惯一直不能与高中数学的学习相适应,成绩一现下滑,最后甚至失去了学好数学的信心,给本人和家长带来了沉重的精神压力和痛苦!这是大学都不愿看到的。一个严肃的重大课题摆到了我们的面前:抓好这个关键期的教育和训练实在是太重要了!可是到底应该怎样抓呢?

  (1) 要正视“转折点”,引导学生自觉地实现“转轨”

  要向学生讲清高中数学的特点,激励他们要与时俱进,认真地学习、领悟数学学习的科学理念与以理论型抽象思维水平主导的数学学习方法,自觉地、尽快地按照“数学学习的基本结构”高质量地完成从初中学习到高中学习的转轨,形成良好的数学学习习惯与方法。

  (2) 要珍惜宝贵的“关键期”,力争思维水平有一个更好的发展。

  关键期也是发展的最佳期,俗话说“一寸光阴一寸金”,抓好关键期,使自己的才能达到更好的发展,会终生受益无穷,否则“时过而后学,虽勤劳而难成“《学记》,这是因为人的各种器官和能力的'发展都具有明显的阶段性。具体地说,高一年级的数学内容中理论成分所占比重较大,这就为理论型抽象思维水平的发展提供了契机,教育学生应当在每一次的理论(定义、定理、公式、法则)教学的全过程(试验→猜测→论证→分析→例题→应用)中,在老师的指导下主动、积极地参与数学活动,力争做到“四个超前”,力争独立解决问题,以促进自己的抽象思维能力的发展。

  3、高二年级学生的心理特征与学习对策

  心理学家的研究告诉我们:高二年级同学的抽象思维水平已经进入“理论型”发展的成熟期,在这个阶段如果教育和训练得法、适当,思维水平还能得到很大的发展,思维能力将会进一步完善。但是,这个时期一般只有一两年时间,过了这个成熟期,理论型抽象思维能力的发展将会减缓,并且会逐渐趋于稳定(也就是说越往后,发展的余地就会越小),取而代之的将是辨证逻辑思维能力的发展。千方百计地抓好“成熟期”这一段极其宝贵的黄金时期,力争获得数学能力的大发展应该是高二数学教学的出发点和落脚点。

  (1) 首先要做好学生的思想动员,要把“成熟期只有一、两年”的规律告诉学生,以激起他们发展思维水平的危机感,学生动起来事情就好办了。

  (2) 高二数学的理论性与方法论性质较高一数学进一步提高,这就为数学能力的大发展提供了充足的精神食粮,作为教师,既是深入研究、开发每章、每节、每个例习题的智力功能,又要研究、关注每个同学的思维特点,精心设计、精心操作,帮助学生在学好数学的同时,努力促进思维水平的发展

  (3) 学法指导的重点仍然是:

  1、 怎样提高对数学理论的理解水平

  2、 怎样提高“用理论思维”的意识和水平,抓好了这两条就抓住了学好数学、用好数学的根本。

  二、数学学习的科学理念

  一条好的创业理念能挽救一个工厂,发展一个企业,振兴一个民族,这已是屡见不鲜的事实!同样,一条好的学习理念,能使一个学习屡屡爱挫的同学从此走向学习的成功,走上人生的康庄大道,这里向读者推荐的就是这样一条科学的数学学习理念,要讲清这个问题,首先需要弄清下面的问题:什么是真正的意义上的数学学习?它的本质与核心是什么?

  从所周知,数学中的知识点不是孤立的,而是紧密联系的,人们把相互联系在一起的若干个数学知识点称为数学知识结构。数学学习就是学习者在自己的头脑中不断建构(建立和造构)和完善数学知识结构的过程,心理学家把这个过程叫做数学知识的“内化”,内化的结果,若通逐步形成一个条理清晰的、内涵丰富的、联系紧密的、体验深刻的知识结构,学习就是成功的,反之,学习就不成功,甚至是失败的,反思这个内化的过程可以得出以下两点结论:

  学习数学的过程从本质上讲就是理解数学知识及其联系的过程,理解得透彻、深刻、全面,内化的质量就高,可见,理解是数学学习的核心,当代美籍数学大师陈省身说过,“数学就是理解!”他之所以这样讲是基于数学具有三大特点——“高度的抽象性”,“严密的逻辑性”,“应用的极端广泛性和灵活性”。如果离开了深入的理解,要想学懂数学、学好数学是根本不可能的,因此理解对数学学习具有极端的重要性,真正意义上的数学学习一定要把理解放在第一位,千方百计地去提高理解层次,科学的数学学习方式必然是建立在深化理解基础上的学习方式,舍此就背离了真正意义上的数学学习,是断然不可能学数学的。

数学学习方法11

  第一章分式

  1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2、分式的运算

  (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

  3、整数指数幂的加减乘除法

  4、分式方程及其解法

  第二章反比例函数

  1、反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2、反比例函数在实际问题中的应用

  第三章勾股定理

  1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

  2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

  第四章四边形

  1、平行四边形

  性质:对边相等;对角相等;对角线互相平分。

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形。

  推论:三角形的中位线平行第三边,并且等于第三边的一半。

  2、特殊的平行四边形:矩形、菱形、正方形

  (1)矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有平行四边形的所有性质

  判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

  推论:直角三角形斜边的中线等于斜边的一半。

  (2)菱形性质:菱形的'四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

  (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

  3、梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

  第五章数据的分析

  加权平均数、中位数、众数、极差、方差

  初中八年级数学学习方法

  一、预习的方法

  (1)看书要动笔。(不动笔墨不读书)

  ①一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或在弄不懂的地方与问题上做记号;

  ②预习时一旦发现旧知识掌握得不好,甚至不理解时,就要及时翻书查阅摘抄,采取措施补上,为顺利学习新内容创造条件。

  ③了解本节课的基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等等。

  ④要把某一本练习册所对应的章节拿出来大致看一遍,看哪些题一下能看会,哪些题根本看不懂,然后带着疑问去听课。

  (2)确定听课要点。把握自己要解决的主要问题,以提高听课的效率。

  二、听课的方法。

  (1)盯住老师。除在预习中已明确的任务,做到有针对性地解决符合自己的问题外,还要把自己思维活动紧紧跟上教师的讲课,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方。公式、定理是如何运用的。许多数学家都十分强调“应该不只看到书面上,而且还要看到书背后的东西。”

  (2)敢于发言。听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,如有疑问或有新的问题,要勇于提出自己的看法。

  (3)记笔记。听课时要把老师讲课的要点、补充的内容与方法记下。

  三、复习方法。

  (1)复习笔记和卷纸。对学习的内容务求弄懂,切实理解掌握。不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,应用它如何拓展加宽等。要勤于复习(知识点、典型题等),经常看,反复看——这就是心理学上讲的艾宾浩斯遗忘曲线所揭示的道理。建议学生采用放电影的方法。完成作业后,把书和笔记合上,回忆课堂上的内容,如定律、公式及例题解答思路、方法等,尽量完整的在大脑中重现。再打开课本及笔记进行对照,重点复习遗漏的知识点。这既巩固了当天上课内容,也可查漏补缺。

  (2)适量做题。准备一个错题本,记载做过的错题再次演练。对于自己曾经做错的题目,回想一下为什么会错、错在什么地方。自己曾经犯错误的地方,往往是自己最薄弱的地方,仅有当时的订正是不够的,还要进行适当的强化训练。

  (3)大胆质疑,增强学习的主动性。要经常与同学研究,或问老师,不要积攒过多问题。更不要把不会做的题完全寄托在课堂上等待老师去讲。

数学学习方法12

  长期参加高考数学阅卷工作,感触颇深。如何在高考有限的时间内充分发挥自己的水平,对每个考生来说是很重要的一件事,它对你数学成绩的影响也许是几分、十几分、甚至更多。根据我的观察与分析,以下四方面对考生解答高考数学题应有帮助。

  一 审题与解题的关系

  有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a>0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。

  二“会做”与“得分”的关系

  要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”。

  三 快与准的关系

  在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

  四 难题与容易题的关系

  拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

  今天就和大家就分享到这,祝各位愉快!

数学学习方法13

  1、多看

  主要是指认真阅读数学课本。把课本当成练习册。一般地,阅读可以分以下三个层次:

  1)课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。

  2)课堂阅读。预习时,只对所要学的教材内容有一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。

  3)课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。

  2、多想

  主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。

  在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。

  3、多做

  主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。

  4、多问

  怎样才能发现和提出问题呢?第一,要深入观察,逐步培养自己敏锐的观察能力;第二,要肯动脑筋。发现问题后,经过自己的独立思考,问题仍得不到解决时,应当虚心向别人请教,向老师、同学、家长,向一切在这个问题上比自己强的人请教。不要有虚荣心,不要怕别人看不起。只有善于提出问题、虚心学习的人,才有可能成为真正的学习上的强者。

  初中数学基本学习方法

  1.预习:带着问题走进课堂,能让你的学习事半功倍。

  2.改错:想要做出完美的作业是无知的,出错并认真订正才更合理。收集你自己做过的错题,订正并写清错误的原因,这些资料是属于你个人的财富。

  3.认真:老师要求的练习并不是“题海”,请认真完成,少动笔而能学好数学的天才即使有,也不是你。

  4.速率:正确率和做题的速度一样重要。

  5.目标:对于考试成绩,给自己定一个能接受的底线,定一个力所能及的`目标。

  6.计划&坚持:合理的作息时间和良好的学习习惯将有助你获得稳定的学习成绩,所以,请制定好学习计划并努力坚持。

  初中数学学习计划

  1、确定目标

  新初一开始,我要为自己顶下一个目标,继而顺着目标奋斗。

  2、知识学习。

  我认为,盲目的学习不仅没有好处,还会浪费宝贵的时间,所以,把重点放在课本上是一个非常明智的选择。“牵一发而动全身”,做到由一个知识点可以拎起一串,提起一面。系统地掌握知识后,技巧也就“水到渠成。

  3、制定计划

  作战讲究“知己知彼,百战不殆”。学习也是一样。所以要制定出符合自己实际情况的学习计划,必须要“知己”。“知己”包括三层含义:明确学习奋斗的目标,了解自己的学习情况,明确地估计自己的能力。之后便是制定学习计划。不用太复杂,不用想着每天做多少题,题海战术并不适合每一个人,而抓住重点题型,抓住历年来的频频出现在考试中的题型,将是最好的计划。

  4、学习要求

  (1)做到上课认真听讲,认真记笔记,把老师讲的所有重点都要烂熟于心。若是课上有没听懂的,课下一定要找老师或者同学补上。“冰冻三尺非一日之寒。”若每一天的知识点都做到必会,那么离成果以又进了一步。

  (2)跟着老师的思路走。老师的重点,往往就是所有考试最爱考的题目,若能把这些东西做到了如指掌,则可以稳中求胜。

  (3)坚持。“坚持”是计划实施过程中最难的。由于缺乏毅力与恒心,很易虎头蛇尾。而学习是一个周期比较长的过程,今天的努力,并不能在明天就得到回报。它是量的积累引起质的飞跃。半途而废,最浪费时间与精力,并对人的自信心有很大的动摇。

  所以,我要求自己时刻不能心焦,更不能气馁、不能轻言放弃。

数学学习方法14

  [摘要]现代教育注重以人为本,学生的主体地位逐渐得到重视,在教师的指导之下,把探究性学习方法应用到数学课堂教学当中,更有利于学生的学习能力的培养,发挥学生的潜能,增强学生学习实践活动的体验,提高教师课堂教学的质量的效率。

  探究性学习初中数学教学实践

  当代的教育对教学的基本要求里,突出强调了课堂教学应该重视和开发学生的智力,锻炼学生的创造性思维能力的养成,培养学生自主学习,分析问题,解决问题的能力,引导学生掌握科学的方法,为终身学习打下良好的基础。

  一、如何在初中数学教学中应用探究性学习

  为了更好的让数学探究学习方法广泛应用,首先要了解其内涵,以及数学课堂教学如何创设探究性的问题。

  (一)探究性学习的内涵

  探究性学习是学生在教师的指导下,自主合作探究,通过尝试,体验,实践等一系列学习过程,培养学生主动的发现问题,分析问题,解决问题,形成学习兴趣和学习能力。使学生掌握基本的数学知识,掌握基本学习技能和基本的数学思维方式。

  数学探究性学习方法是以探究数学问题为主的教学方法,教师依据新的课程标准,把现行的数学教材作为探究性学习的基本内容,教师在课堂教学过程中起指导作用,发挥学生主体地位,让学生自主的结合实际生活经验,表达自己的看法探究问题,利用自己的数学知识解决实际问题。

  (二)初中数学探究性学习的教学情境设置

  探究是从问题的产生而开始的,而问题又不能脱离情境的创设。在数学学习过程中,学生通过仔细观察来发现问题,运用比较,分析,结合已经掌握数学知识,探究合作交流,使学生的数学思维得到锻炼。

  教师在课堂教学设计中多设置这样的问题,以此增加学生探究学习的机会。

  例如,在“平行四边形的特征”教学中,教师若先让学生先通过折纸(给每位学生一张长方形纸,裁剪成一个平行四边形)猜想平行四边形的特征,学生一旦提出猜想,就非常迫切的想知道自己的猜想是否正确,从而激发了学生自主学习和探究的热情。以此形成学习交流的小组,自主分析,得出结论。教师加以引导,学生积极主动的思考,师生合作交流,培养和发展学生的能力。类似问题的创设,应用于数学教学当中,创造良好的教学环境有利于学生自身发展,养成探究学习的习惯,同时也提高了数学教学的质量。

  二、在初中数学教学中应用探究性学习的重要性

  探究性学习方法不仅仅是一种先进的教学理念,更是作为新课程标准的.建议,更好的实现教学目标和完成教学任务,其重要性体现在以下三个方面:

  (一)探究性学习法符合新教材的教学要求

  新课标重视探究性学习的教育功能,“学生是学习的主人,教师是学习的组织者、引导者”,“教学中要培养学生的学习兴趣和愿望,鼓励他们发现问题和提出问题,指导他们学会合适的学习方法,为学生的终身学习打下良好的基础。”强调学习过程和方法的学习。在学生学习知识的过程中,掌握获取知识的方法,培养学习的兴趣,增加探究能力。

  (二)符合学生自身发展的需要

  教育学家陶行知曾说过:“创造力最能发挥的条件是民主”。说明现代教育教学方法把探究性学习运用到教学当中,为学生享有自由创造,探究学习提供了民主和谐的教学环境。而且培养学生的创新精神是我国当前教育教学改革的首要任务。也满足学生自身发展的要求。

  (三)学习方式的革新

  随着社会的不断进步,将来社会所需的人才类型的转变,需要数学教育从“为了获得数学知识”,转向“为了获得数学能力和数学态度”,即鼓励学生主动探究问题,加深数学基础知识的掌握,解决数学学习中的问题。初中数学教学实施以探究性学习为主,才能真正改进学生学习方式和方法的革新,形成“自主、合作、探究”的学习方式。

  三、初中数学探究性学习的教学评价

  (一)探究性学习是学生应该掌握的学习基本形式,学生通过不断地探索,发现,在这个过程中获得自身发展。传统教学里学生知识的接受是被动,消极的,对数学的知识的认识不深,课堂教学枯燥乏味,而开展探究性学习,把学生培养成主动、积极获取知识的探究者。学生通过课堂教学主体实践活动,在探究中学,在学中探究,教、学、探究为一个有机整体,直接经验和间接经验相互交流,知识理论与实践活动相统一。

  (二)探究性学习方法的运用,也对教师提出了新的要求和挑战,要求教师要了解一般性数学教学的探究形式,改变传统的教学观念,深入开展探究性教学,创设开放性的教学情境,多样的探究性问题的创设,是教学课堂不再是教师的一言堂,通过学生对问题的不断探究,确立了学生在课堂教学中的主体地位,使学生从被动的,接受性的,机械式学习方式向主动的,探索性的发现式学习方式转变,让学生体会到学习数学的乐趣,体验数学探究性学习的过程以及掌握数学探究的方法。

  (二)评价数学教学的内容,是教师教学方法和教学手段的选择与运用。教学方法,是指教师在教学活动过程中,为达成教学目的和教学任务,而采取的活动方式。包括学生通过教师指导,如何“学”的方式,如何把“教”的方法与“学”的方法两者统一,使学生充分展示自己的个性,把所学的数学知识应用实际生活中,全面提高学生数学知识结构的构建及良好思维方式的培养。

  四、总结

  在初中数学教学过程中,教师通过问题情境的创设、探索研究的开展、学生小组合作交流、反思总结教学经验、数学知识的课外延伸等多个环节,让学生学会自主获得数学基础知识的方法,使学生在数学学习过程里处于积极主动参与的状态促使学生自主发展,培养独立实践的能力。探究性学习方法应用于课堂教学之中,更好的体现出数学教学的价值和意义。

数学学习方法15

  二元一次方程(组)

  1、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  2、二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  3、二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  4、二元一次方程组的解法。

  (1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法。

  (2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。

  提醒大家:二元一次方程组的解法包括代人消元法和加减消元法。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的`。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

【数学学习方法】相关文章:

数学的学习方法06-14

数学的学习方法09-26

小学数学的学习方法11-12

关于数学的学习方法03-19

初中数学的学习方法01-12

奥数学习方法05-24

关于数学的学习方法09-11

数学基本学习方法07-21

数学学习方法11-21

(优秀)数学的学习方法06-16