初中数学学习方法[汇编15篇]
在学习、工作、生活中,大家都需要每天学习,吸收有用的知识。同时,学习方法也引起了大家的重视。有好的学习方法才能更好的学习。想必很多人都在为找到正确的学习方法而苦恼吧?下面是小编收集整理的初中数学学习方法,仅供参考,大家一起来看看吧。
![初中数学学习方法[汇编15篇]](/pic/00/cafdd1a708_5fbf7f093241d.jpg)
初中数学学习方法1
一、通读全卷一是看题量多少,不要漏看题;二是选出容易题,准备先作答;三是把自己容易忽略和出错的事项在题的空白处用铅笔做个记号
二、认真审题审题一定要细心.要放慢速度,逐字逐句搞清题意(似曾相识的题目更要注意不背答案),从多角度挖掘隐含条件及条件间内在联系,为快速解答提供可靠的信息和依据
三、由易到难先做容易题,后做难题.遇到难题,要敢于暂时“放弃”,不要浪费太多时间,等把会做的题目解答完后,再回头集中精力解决它
四、分段得分数学解答题有“入手容易,深入难”的特点,第一问较容易,第二、三问难度逐渐加大.因此,解答时应注意“分段得分”,步步为营.首先拿下第一问,确保不失分,然后分析第一问是否为第二、三问准备了思维基础和解题条件,力争第二问保全分,争取第三问能抢到分
五、跳跃解答当不会解(或证)解答题中的前一问,而会解(或证)下一问时,可以直接利用前一问的结论去解决下一问
六、逆向分析当用直接法解答或证明某一问题遇到“卡子”时,可以采用分析法.格式如下:假设“卡子”成立,则(推出已知的条件和结论),以上步步可逆,所以“卡子”成立
七、先思后划当发现自己答错时,不要急于划掉重写.这是因为重新改正的'答案可能和划掉的答题无多大区别
八、学会联想当遇到一时想不起的问题时,不要把注意力集中在一个目标,要换个角度思考,从与题目有关的知识开始模拟联想.如“课本上怎么说的?”,“以前运用这些知识解决过什么问题?”,“是否能特殊化?”,“极限位置怎样?”等等
初中数学学习方法2
初中数学知识点总结及解法
基本知识
数与代数A、数与式:
1、有理数
有理数:
①整数正整数/0/负整数
②分数正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:
① 同底数幂相乘:a^ma^n=a^(m+n)
② 幂的乘方:(a^m)n=a^mn
③ 积的乘方:(ab)^m=a^mb^m
④ 同底数幂相除:a^ma^n=a^(m-n) (a0)
这些公式也可以这样用:⑤a^(m+n)= a^ma^n
⑥a^mn=(a^m)n
⑦a^mb^m=(ab)^m
⑧ a^(m-n)= a^ma^n (a0)
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
方程与不等式
1、方程与方程组
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的'项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1、一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对它也有很深的了解,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。
2、一元二次方程的解法
大家知道,二次函数有顶点式(,),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a
3、解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。
4、韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=,二根之积=
也可以表示为x1+x2=,x1x2=。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。
5、一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为△,读作diao ta,而△=b2-4ac,这里可以分为3种情况:
I当△0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)。
2、不等式与不等式组
不等式:
①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C
在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,A*CB*C(C0)
在不等式中,如果乘以同一个负数,不等号改向;例如:AB,A*C
如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:
①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
②当B=0时,称Y是X的正比例函数。
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
空间与图形
图形的认识
1、点,线,面
点,线,面:
①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:
①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:
①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
角
线:
①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。
③将线段的两端无限延长就形成了直线。直线没有端点。
④经过两点有且只有一条直线。
比较长短:
①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:
①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:
①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:
1、对角线相等的菱形
2、邻边相等的矩形
基本方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个**的任一元素到同一**的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:
(1)平移;
(2)旋转;
(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
初中数学学习方法3
数学是初中阶段的三大主科之一,它在初中的学习科目中,占据了主要地位。面对着初中数学里的圆、三角形、四边形、函数、根式、有理数、方程组、不等式等等,也许有很多同学会觉得头疼,初中数学趣学网编辑为了让同学们能够好好复习,考出优异的好成绩,特此汇总了涵盖整个初中数学的知识点、各种精选练习题、经典试题、中考真题,愿同学们多学习,打下坚实的基础。
数学是一门基础学科,对于广大中学生来说,数学水平的高低,直接影响到物理、化学等学科的学习成绩,数学的重要地位由此可见。步骤/方法
深刻理解概念。
概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。
多看一些例题。
细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识
的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:
不能只看皮毛,不看内涵。我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。要把想和看结合起来。我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。各难度层次的例题都照顾到。
看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。
多做练习。
要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把
已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的'作用。必须熟悉各种基本题型并掌握其解法。课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌握了更多的思维方法,为做综合题奠定了一定的基础。多做综合题。综合题,由于用到的知识点较多,颇受命题人青睐。做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。
如何对待考试
学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的
成绩,以下几个方面的素质是必不可少的。
功夫用在平时,考前不搞突击,考试中需要掌握的内容应该在平时就掌握好,考试前一天晚上不搞疲劳战,一定要休息好,这样,在考场上才能有充沛的精力,考试时还要放下包袱,驱除压力,把注意力集中在试卷上,认真分析,严密推理。
应试需要技巧,试卷发下来后,应先大致看一下题量,大概分配一下时间,做题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑,一道题目做完之后不要急于做下一道,要再看一遍,因为这时脑中思路还比较清晰,检查起来比较容易,对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处(当然是题目要求证明的),也是可以运用的,另外,对于试题必须考虑周全,特别是填空题,有的要注明取值范围,有的答案不只一个,一定要细心,不要漏掉。
考试时要冷静,有的同学一遇到不会的题目,脑袋立刻热了起来,结果,心里一着急,自己本来会的也做不出来了,这种心理状态是考不出好成绩的,我们在考试时不妨用一用自我安慰的心理:我不会的题目别人也不会,(俗称精神胜利法)或许可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。
初中数学知识的记忆方法
记忆是知识的仓库,学过的知识记得牢,积累的知识就丰富,而丰富知识的积累将为创造型人才的培养奠定坚实的基础。因此我们每一个小学教师都应该重视学生记忆力的培养,教给学生记忆的方法。许多数学知识,不仅需要学生理解,更要让学生记住它。那么,怎样才能提高学生记忆数学知识的效果呢?下面介绍几种方法。
归类记忆法就是根据识记材料的性质、特征及其内在联系,进行归纳分类,以便帮助学生记忆大量的知识。比如,学完计量单位后,可以把学过的所有内容归纳为五类:长度单位;面积单位;体积和容积单位;重量单位;时间单位。这样归类,能够把纷纭复杂的事物系统化、条理化,易于记忆。
歌诀记忆法就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。
规律记忆法即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值× 进率=低级单位的数值,低级单位的数值÷进率=高级单位的数值。掌握了这两条规律,化聚问
初中数学学习方法4
1、会听
听课要会听,不是你集中经历去听就行,而是要结合自己预习时自己所突破不了的知识去听,做到有的放矢,如果采用小组探究形式学习,一定要有自己的见解,不能人云亦云,小伙伴之间要取长补短,把重点和难点知识把握好,做到当堂课的内容一定要当堂消化理解,不要欠债。
2、会记
数学课往往涉及到很多,这些都是学生在解答数学问题的依据,要求学生对概念、定理、公理、公式等进行熟记,并逐渐养成归纳、整理的好习惯,让学生形成一定的知识体系,形成对知识的整体认知。
上课做笔记不是简单的'记录老师的板书,而是要把老师所讲的知识点、解题技巧和容易犯的错误进行分类整理,还要做到经常回顾,加深理解和记忆。
3、会练
数学不同于其他学科,只把概念、定理、公理、公式等进行熟记还不够,有时无法解决一些实际问题,只有通过不断的练习才能做到熟能生巧,减少运算中出现的错误。
此环节要求学生做题要快,准确率要高,书写干净利落。
让学生养成学习中认真、严谨的科学态度。
初中数学学习方法5
1、相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形
2、相似三角形的判定方法:
根据相似图形的特征来判断。(对应边成比例,对应角相等)
1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;
3.如果两个三角形的两组对应边的比相等,并且相应的`夹角相等,那么这两个三角形相似;
4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
3、直角三角形相似判定定理:
1.斜边与一条直角边对应成比例的两直角三角形相似。
2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
4、相似三角形的性质:
1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方。
初中数学学习方法6
初中数学7点学习方法
一、课内重视听讲,课后及时复习
数学新知识的学习,数学能力的培养主要在课堂上进行。所以要特别重视课内的学习效率,不敢有一丝马虎,一定要形成正确的学习方法。上课时要紧跟老师的思路,积极拓展自己的思维,比较自己的思路与老师讲的有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,多想几个为什么。应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,一定要让自己冷静下来认真分析题目,尽量自己解决,理清思路。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系,形成自己的学习体系。
二、适当多做题,并养成良好的解题习惯。
要想学好数学,多做题,是学好数学的必有之路,熟悉掌握各种题型的解题思路。刚开始要以基础题目入手,以课本上的题目为准,提高自己的分析能力。掌握一般的解题思路。对于一些易错题,可备有错题集,写出自己的解题思路、正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正,在平时养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键的时候,你所表现的解题习惯与平时解题无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态、正确对待考试
首先,把主要精力放在基础知识、基本技能、基本方法这三个方面的学习上。因为每次考试占绝大部分的是基础性的题目,而那些难题及综合性较强的题目是作为调剂用的。认真思考,尽量让自己理出头绪,做完题后要总结归纳,调整好自己的心态,使自己在任何时候都保持镇静,思路有条不紊,克服浮躁情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能把我打垮的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前在不保证正确率的前提下提高解题速度。对于一些容易的基础题,要有十二分的把握拿满分;对于一些难题,也要尽量拿分,考试中要尝试得分,使自己的水平正常甚至超常发挥。
学生获得知识和能力是在学习行为过程中实现的,一定的学习行为,重复多次就会形成一定的学习习惯,养成好的.习惯会使人终生受益。特别对于数学学科,不良习惯会严重影响学生的数学学习,阻碍学生数学素质的全面提高。因此,学生只有想学是不够的,还必须“会学”。要讲究学习方法,提高学习效率,变被动为主动。
四、预习方法
预习是学生自己摸索、自己动手、动脑、自己阅读课文的过程,可以培养学生的阅读和自学能力,自我运用能力。课前可以自我布置预习提纲,自己在课本上把关键句、重点词、概念、公式、定理划出来,养成边读边划边批边算的习惯。所要达到的要求:课本上的例题课前会做。
五、听课方法
听课要做到 “一专三动”,即专心听老师对重点难点的剖析,听解法及思路分析、技巧等,在听课过程中要对预习中的例题的不明之处提出自己的疑问;其次在听课时还要勤于思考,积极举手发言,敢于发表自己的见解。认真做好堂上练习,认真听老师讲评及课后小结,积极动脑、动手、动口参与教学活动。
六、错题方面
在平时的课堂作业过程中,自己做题时难免出现这样那样的错误,我们自已准备好一本笔记本,把作业本上的错题更正在笔记本上,并要求分析错题的原因,解决的策略及从错题中得到的收获都一一记录下来,整理成一本错题集。
七、总结归纳复习
在进行单元小结或学期总结复习时,自己对所学过的每个知识点、每章节的内容加以综合归纳,注意知识的新旧联系、知识的前后联系、知识的横向联系,写出简明小结,使知识系统化、条理化、专题化。有选择性地解一些不同类型和档次的习题,掌握各类题的解题规律和方法,巩固所学内容。
初中数学学习方法7
一、多看
主要是指认真阅读数学课本。把课本当成练习册。一般地,阅读可以分以下三个层次:
1。课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
2。课堂阅读。预习时,只对所要学的教材内容有一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。
3。课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。
二、多想
主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
三、多做
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的.知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
四、多问
怎样才能发现和提出问题呢?第一,要深入观察,逐步培养自己敏锐的观察能力;第二,要肯动脑筋,。发现问题后,经过自己的独立思考,问题仍得不到解决时,应当虚心向别人请教,向老师、同学、家长,向一切在这个问题上比自己强的人请教。不要有虚荣心,不要怕别人看不起。只有善于提出问题、虚心学习的人,才有可能成为真正的学习上的强者。学习方法是灵活多样、因人而异的,能不断改进自己的学习方法,是你学习能力不断提高的表现。
初中数学学习方法8
提倡学优生争当小老师,在帮助中差生学习中锻炼自己的思维。
学优生既然在各方面表现都比较优秀,那么我们可以通过他们开展中差生的个别辅导工作,将学优生的优秀的学习经验和好的学习方法介绍给其他同学。我们可以将全班分成十多个小组,每一个小组由一个优生任小组长,这个小组长我们称为导生。导生是从学生中选拔出来的.学习带头人,他既是学生,又要给别的同学当小老师,他自己既要带头学习,但又要帮助其他同学一起进步。
导生也是我们教学改革中的先“富起来”的人,在班上,他们首先在老师的指导下明白了如何学习?懂得了如何看书,如何自学,如何听课,如何总结,如何预习,如何积极主动地去学,然后,他们又将这种学习经验教给其他同学,最终达到全班同学的共同进步的目的。利用导生展开辅导、评比、讨论以及学习方法的互嗟活动,可以解决班级授课制的许多突出问题。此外,导生也在这些活动中得到锻炼,因为能够对一个问题进行顺利的讲解,可大大地加深印象,许多含糊的问题条理化清晰化了,对浅显的问题理解得更深刻了。
初中数学学习方法9
选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的.方法与技巧。
大家对于初中数学学习方法汇编之客观性题的内容都熟悉掌握了吧。接下来还有更多更全的初中数学学习方法等着大家来掌握哦。
初中数学学习方法10
应届毕业生网向大家介绍下数学的学习方法是什么?
转变观念,化被动学习为主动学习
初中阶段,特别是初中三年级,老师会通过大量的练习,学生自己也会查找很多资料,这样就会把自己的数学成绩得到明显的提高,这样的学习方式是一种被动式的学习也叫题海战术,学生只是简单的接受数学知识,并且初中数学的知识相对比较浅显,学生很快就能掌握知识。可是到了高中以后通过题海战术是能提高一些对数学知识的掌握,可是对于这个知识中的为什么就不能说出其所以然,就不能对相关的知识进行创新。所以高中数学的学习不只是单纯的做题就可以掌握其知识,而是要弄得其所以然才行,这样就需要学生自己去主动发掘知识的内涵,在老师的指导下把数学知识进行扩展,达到触类旁通。要做到这样就需要学生本身更加主动的学习,这样才能更加的发现数学中的乐趣。
学会听课,尽可能掌握更多的知识
数学的学习是需要老师的引导,在引导下,学生根据自己的情况做一些相应的练习来掌握知识,巩固知识,要想提高学习效率,就需要学生做到以下一些:
1、做好预习,提出问题,进行多次阅读课本,查阅相关资料,回答自己提出的问题,力争在老师讲新课前尽可能的掌握更多的知识,如果不能回答的问题可以在老师讲课中去解决。
2、学会听课,在初中的教学中老师经常会把一个知识点进行多次的讲解和通过大量的练习让学生去掌握,可是到高中以后,老师对于一个知识点就不会再通过大量的练习来让学生去掌握,而是通过一些相关知识的讲解去引导学生明白这个知识是怎么来的,又如何用这个知识解答一些相关的疑惑,如果学生能明白的话就能在自己的知识下通过课后的练习去巩固这些知识,同时学生也可以根据老师的引导去扩展知识。
当然,对于自己在听课过程中一下子不能明白的知识,可以通过举手让老师再进行一次分析讲解,也同时做好相关的记录,以备在课后去进一步弄明白;对于自己在预习中提出的问题,如果老师没有解决的话,可以利用课余时间请教老师解答,这样学习就可能学习到更多的知识。
3、敢于发表自己的想法,在高中数学学习中,学生会遇到很多解题技巧,可能这种方法你知道,另外的人不是很熟悉。那么就需要学生敢于发表自己的想法,这样就能让大家掌握更多的技巧。也同样能激发同学学习的兴趣,如果一节课都是老师讲的话,课堂气氛也是很闷的,学生学习的效率也是很低的。
4、听好每一分钟,尤其是老师讲课的开头和结束
老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
课后巩固
很多学生在学习过程中没有重视课后的巩固,只是觉得在课堂上掌握一些知识就够了,其实这是错误的。高中数学的知识很多,并且不像初中数学那么浅显,而是有很多的内涵,如果不能进一步挖掘其内涵,那么只是掌握这个知识的表面,于是在自己做练习时就不知道如何去解了,也不能运用这个知识的。
做练习是需要的,可是有些学生只是为了练习去做练习,而不是为了巩固这个知识,扩展这个知识去做练习,经常是做完这个练习后算做完了,这样跟初中的做题是没有区别的。其实,我们还应该把这个练习中使用到的知识串起来,这样我们就能明白那些知识在运用,也能掌握更多的知识。也同样能发现那个知识点是重点,也能发现难题是如何把相关知识串起来的。
重视每一次测试,认真分析考试中丢分的原因,并对丢分的'地方做出相关的措施。
数学的学习技巧有很多,每一个人都有自己的不同技巧,我自己根据自己读书时期的一些体会和现在教学过程中的体会,归纳出几点技巧与大家共勉。
学会看题、学会选做题
高中的相关资料比初中更多,高考是全社会都关注的问题,所以高中的练习也特别多,有些学生买的资料也多,于是如何利用题目来掌握我们学习的知识,扩展我们学习的知识就成为学习的关键。我觉得题目要多看,多想,看资料中的解题方法,想方法中的为什么,这样就可以借鉴更多的方法。方法多了,可以也要消化。于是我们要会有选择的做题,达到事半功倍。我建议每天一小练,每周做一套完整的考题,看2~3套考题,从中去发现那些是这段时间数学学习的重点知识,那些是我们常用的解题方法以及使用什么方法能优化解题。
寻找合适自己的学习方法
学习成绩的好坏,与能否掌握科学的学习方法密切相关。因此,学生应该特别重视学习方法,并创造性的运用适合自己特点的学习方法。
在现代社会中,知识更新的速读与日俱增,时代对我们提出了越来越多样化的学习要求。单凭“铁杵磨成绣花针”、“功到自然成”的方式学习,是无法完全适应的。今日的学习成败,不仅取决于勤奋、刻苦、耐力与花费的时间和精力,还取决于每位学生的学习效率。
爱因斯坦曾经被人问起成功的秘诀,他说:“成功等于艰苦的劳动加正确的方法,再加上少说空话。”并诙谐的写下公式:W=X+Y+Z。我们也可以套用这条公式来解读学习成功的秘密,即将W视为成功,X视为勤奋,Z视为不浪费时间,Y视为方法,所以“学习成功=勤奋+不浪费时间+方法”。方法对勤奋和惜时的效果有增加或抵消的作用,只有采用科学的学习方法,才能保证学习的成功。
掌握科学的学习方法,也是塑造学习能力的重要环节。英国有位社会学家曾经调查几十位诺贝尔奖得住,发现他们大多认为学习时最重要的就是掌握恰当的方法。而法国著名生理学家贝尔纳也深有所感的说:“良好的方法能使我们发挥天赋与才能,而拙劣的方法则可能阻碍才能的发挥”。由此可见,良好的学习方法可以使学生在知识的密林中成为手持的猎人,能获得有效地进攻能力和选择猎物的机会。
但是,什么是最好的学习方法?好的学习方法一定要适合学生的特质与学习环境。一般来说,好的学习方法应该符合以下三个条件:符合认识规律的科学方法;符合自己个性特点的方法;符合不同学习内容和不同教师授课特点的方法。在选取合适自己的学习方法时,可以从下列几个方向来摸索:不同学科的学习方法、预习方法、听课方法、复习方法、做作业和自我测试方法、改错的方法和知识归纳的方法等。
初中生学习方法技巧
掌握科学的学习方法一:
学习要有明确的目的、目标
无论做什么事都要有明确的目的,学习尤其如此。目的越明确,学习积极性就越高;目标越宏伟,为实现目标所付出的努力就越多,学习意志就越坚强。目标有大目标,小目标,有远期的,也有近期的,小到一节课,大到一生的志向都属于此范畴。小目标要从属于大目标,近期目标要为远期目标做铺垫。确定学习目标要根据一个人的具体情况而定,不能太低,也不能太高。太低不利于意志的培养,太高不仅不利于目标的实现,学习积极性也会受到打击。
掌握科学的学习方法二:
掌握科学的记忆方法
记忆是学习中最重要的学习手段。首先要有来年搞好的记忆习惯。不论是哪门学科都有背诵的任务,要求背诵的必须背诵,以形成习惯。再就是根据遗忘规律去记忆,即即使的重现,勤复习、多复习。当天的内容当天复习,本周的功课周复习,一月还有小复习,考前再做总复习,这样学习才记忆牢固,才能取得最佳学习效果。
掌握科学的学习方法三
抓好学习环节的关键
学习可分为四个主要环节:预习、听课、复习、作业。每个环节都有其特点,也有其关键。
预习:预习要养成习惯,习惯很重要,既然是习惯决不能三天打鱼两天晒网。预习的时间要根据实际情况而定,可以在学习曰挤时间,也可以在周末,还可以在节假曰。预习要找难点,找难点的目的是就是要攻破它,这是预习的关键。这能证明一个人的能力,同时也能培养一个人的能力,更会磨练一个人的意志。
听课:听课是学习时最重要的环节,会听课意味着会抓重点,能理解老师的意图。
复习:复习要摸规律,复习的目的是把学习内容进一步巩固、掌握,以便摸清其内在规律,在运用中举一反三。
作业:作业要独立完成,典型的内容要反复练习,这样才能形成技能技巧。
掌握科学的学习方法四:
及时做好笔记与作业
记性好不如烂比头。记笔记是一种良好的听课习惯,好笔记不是全记,不是漏记,不能只听不记,更不能只记不听。可以记在课本上、教学内容附近,这样记录的内容不易丢失,又易和教学内容相联系,既实用,又利于今后复习。布置作业的目的是巩固学习的知识。多数学生为了完成任务,不复习就急于做作业,这不利于知识的巩固。做作业前首先阅读一遍课本内容,和老师讲课的内容对照一下,看一看是否一致。这样做等于及时地复习了一遍,3然后再做作业,既快速又能保证作业质量,达到最佳的学习效果。
掌握科学的学习方法五:
交叉学习效果好
不少同学在读书学习时,长时间单一的学习同一内容,表面上看时间用了不少,但效果并不理想,这是为什么呢?
脑卫生学者告诉我们,人的大脑皮层细胞是有分工的,学习不同学科的内容回引起不同部分的兴奋。大脑长久接受同一类信息刺激,使某一部位长久兴奋,就容易产生疲劳,降低学习效率。若及时转换学习内容,合理调节“兴奋灶”,就可以避免大脑某一兴奋区长时间过于紧张,使别的部位出现新的兴奋区。
马克思的“穿插读书法”是:当阅读理论书籍感到疲倦时,立刻把书搁下,去读一种不同的书籍,有时读诗,有时读小说。过一会儿,疲倦的大脑得到休息,便又重新研究起理论书籍来。马克思的读书方法符合生理科学。
在读书求知时,为了充分利用时间,可交叉阅读内容差别较大的不同书籍。在学习内容的安排上要注意各门学科交替进行,特别是文理交替。学完语文做物理,读完政治写数学……学习之余,若做一些文体活动,或干点家务活,句可以使大脑原有的兴奋区得到调节。这样,既能缓解疲劳,又能开阔知识视野,从而延长连续阅读的时间,提高学习效率。
中学生学习时多接见交叉学习的方法,科学运筹时间,情绪饱满地投入学习,以取得学习的更大效益。
掌握科学的学习方法六:
课堂笔记整理“七步法”
由于种种原因,同学们在课堂上所做的笔记,往往较杂乱,可后觉得不好用。为了巩固学习效果,积累复习资料,指导读写训练,有必要学会整理课堂笔记,使之成为清晰、有条理、好用的“导读助练”的参考材料。
对课堂笔记进行整理、加工,其方法有“七”:
一.忆。“趁热打铁”,即课后抓紧时间,对照书本、笔记,及时回忆有关信息。这是整理笔记的重要前提,为笔记提供“可整性。”
二.补。课堂上所做的笔记为的是要跟着老师讲课的速度进行的,一般的讲课速度要较记录速度快,于是笔记就会出现缺漏、条约、省略、简单甚至符号代替文字等情况。在“忆”的基础上,及时作修补,使笔记有“完整性”。
三.改。仔细审阅笔记,对错字、错句及其他不够准确的地方进行修改。其中,特别要注意与解答课后练习,与学习目的有关的内容的修改,使笔记有“准确性”。
四.编。用统一的序号,对笔记内容进行提纲式的、逻辑性的排列,注明号码,梳理好整理笔记的先后顺序,使笔记有“条理性”。
五.分。以文字(最好是用红笔)或符号、代号等划分笔记内容的类别。例如,哪些是字词类,哪些是作家与作品类,哪些作品(课文)是分析类,哪些是问题置疑、探讨类,哪些是课后联系解答等等。为分类摘抄做好准备,使笔记有“系统性”。
六.舍。省略无关紧要的笔记内容,使笔记有“简明性”。
七.记。分类抄录经过整理的笔记。同类的知识,抄在同一本簿,或一本簿的同一部分里,也可以用卡片分类抄录。这样,曰后复习,使用就方便了,按需所取,纲目清晰,快捷好用,使笔记有“资料性”。
语文学习应养成的习惯
1.熟读、背诵课文、美文的习惯。
2.阅读优秀课外作品,鉴赏、评析、写笔记的习惯。
初中数学学习方法11
数学是研究现实世界的空间形式和数量关系的一门科学。它的内容、思想和方法已广泛渗人自然科学和社会科学,成为现代文化的重要组成部分。学好数学对于我们适应生活,参加生产、进一步学习物理、化学、计算机等其他学科的知识具有重要的意义。由于数学学科具有高度的抽象性、严密的逻辑性,在学习过程中容易使人产生枯燥、乏味、畏难等消极情绪,影响了对数学的学习和数学成绩的提高。其实数学的学习是有一定方法和规律的,只要掌握合理的学习方法,正确认识数学学习和发展的规律,那么每一个同学都能树立起学习的信心,并培养起浓厚的学习兴趣,进而为数学成绩的提高和数学能力的发展打下良好的基础。
一、学会学习
课内学习是中学生学好各门功课的中心环节。学生最宝贵的时间都在课堂中度过,并且在老师的指导下,将人类经过几千年积累下来的大量知识和经验转化为自己的知识,课内学习是学好数学的关键,它主要包括三个环节:(1)课前认真准备;(2)课中积极思考;(3)课后力求发展。
(一)课前认真准备。课前准备包括复习旧课和预习新课,复习旧课应明确课本中必须掌握的知识点和能力点,看看哪些要背下来,哪些要理解、哪些要应用,做到胸中有数。平时掌握较好的打个“照面”,平时学习中的疑难点以及学习新课要用到的知识要重点突破,为学习新知扫除障碍,打开通道,使自己信心百倍地进入学习状态。预习新课应明确预习任务,了解新课内容,找出疑难和重点部分以及主要概念、定理、例题解法等;适当作笔记,记下会与不会部分,带着问题去听课,尝试做新课后面的练习题,锻炼自己独立获取知识的自学能力和探索能力。江苏洋思中学由一所乡镇普通学校一跃成为全国名校,学生成绩明显提高,其成功之处就是充分发挥了预习的作用。我们每一名同学要始终把预习作为学好功课的重要环节来对待,持之以恒,养成先预习后听课,先复习后作业的良好学习习惯。
(二)课中积极思考。我国著名教育家严济慈说:“听课,这是学生系统学习知识的基本方法。要想学得好,就要会听课。”凝神——这是听好课最基本最重要的因素。因为凝神是捕捉知识信息的原动力,凝神能使我们深思熟虑,凝神能激活人们的聪明才智。思索——学起于思,思源于疑。在预习中可能碰到不少疑难,当老师讲到这些疑难时,要边听边思考,听老师怎样带领我们渡过难关,想老师为什么这样解答或证明,听同学回答老师提问的独特见解或新颖解题思路。思考是接受知识、内化知识最强有力的保证。质疑——“提出一个问题远比解决一个问题重要”。这是物理学家爱因斯坦的一句名言。在通过听讲解决预习中的疑难的同时,又会产生新的疑难,同学们要善于质疑问难,选择合适的时机提出问题。当堂提问既可以趁“打铁,得到及时解答,又可以昭示其他同学,引起思考,共同讨论,集思广益,达成共识。动笔一“不动笔墨不读书”,这是徐特立老人的治学经验。勤写能使我们经常处在积极的思维之中,多练能避免出现眼高手低的错误,动笔能使我们更加准确和完美。
(三)课后力求发展。学习是一个系统过程,既有课前的预习准备,课上的听讲演练,还有课后的延伸和拓展,课上时间是有限的,解决的问题和学会的知识也是有限的,课后为我们的成长和发展提供了广阔的空间。课后要加强记忆,扩大积累,系统小结,形成网络,将学过的知识在头脑中“消化、简化、序化”,嵌人脑中已贮存的知识系统中,最后达到使知识“自由出入”,随时调遣,灵活运用的目标。
二、学会审题
所谓学会审题,就是要求解题前一定要通读题目,弄清题意。首先弄清题目的性质及其类型,搞淸已知条件是什么,要求的是什么,由已知求未知已经具备了什么条件,还需要什么条件,这些条件怎样来找。然后根据有关的概念、定律、公式、公理、定理、法则来寻找所需要的条件,并确定正确而简捷的解题步骤,特别是对关键性的字句要认真推敲、耐心揣摩。尽管一个题目其内容的呈现方式多样,有陈述式、疑问式、图象式、图表式等,但是题目中的条件一般来说是以三种方式出现的:一是题目中给出的具体数值;二是题目中给出的不是具体数值,而是叙述了一句话,如图形与图形之间的关系,一个量和另一个量之间的关系等;三是隐含条件,如字母的取值范围,边的关系,角的关系,某种变化中存在的规律等;在解题过程中不仅要认真审题,弄清问题的已知和结论,还要学会挖掘隐含条件。当找不到解题思路时,要看一看是不是用上了所有的已知条件,由已知可挖掘出哪些隐含条件。如果平时注意养成良好的审题习惯和严谨的科学态度,做到“审”有依据,“解”有方向,那么每一个同学的.解题、论证能力就会大大增强。
常用的审题方法有下列几种:
(一)仔细读题,抓关键词句、搜索有用信息。如大量的应用题不像纯数学习题那样简短,而需更多的文字表述,那么审题时,就要“去粗存精”,把具有或代表一定数学意义或数学关系的词句挑选出来,这是解决应用问题的关键。
(二)逆向审题,抓住使结论成立的条件,执果索因。一些几何证明问题,难以直接入手证明,可采取逆向审题的方法,由结论出发,寻找使结论成立的条件,打通各种关碍,最后由条件出发,写出证明过程。
(三)数形结合、语言互译、辨明数学关系。大量的数学应用问题,借助于图形分析其数量关系,这就需要把文字语言译成符号语言;大量的几何证明问题需要把文字语言,结合图形译成符号语言才能完成证明过程;另一方面,有些应用题是以图象或图表的形式给出的,这时就要认真观察分析,把图表或图象语言译成符号语言或一般文字叙述来解决。各种语言的互译能够增强对问题的透视,进一步辨明数学关系,这对打开解决问题思路具有重要的意义。
三、学会类比
俄国教育家乌申斯基说过:“比较是一切理解和思维的基础。我们正是通过比较来了解世界上的一切的。”这充分说明了比较在认识和学习过程中的重要作用。数学中的类比法是最常用的比较方法,也是重要的学习方法。类比的作用主要体现在两个方面:
(1)通过两类具有相同或相似属性的问题之间的对比,根据一类问题的某些已知特征或处理方法探索另一类问题的相应特征或相应处理方法。
(2)通过两类相关问题之间的对比,发现他们的共性与个性,弄清差异,形成规律性认识。在学习过程中有目的地把相同或相似的数学概念、定义、性质、公式、定理、法则进行比较,一方面突出某些概念和规律的共性,加深对问题的理解记忆,并能由此及彼,由例及类,触类旁通,从而获得规律性的认识。另一方面,突出某些概念和规律的个性,掌握概念和规律的实质,把握概念的内涵和外延,消除头脑中存在的错误或模糊认识。例如,学习《一元一次不等式》一部分内容时,可同《一元一次方程》一部分内容就概念、性质、解题步骤、解(解集)的情况及解(解集)的表示等方面进行类比。
学习公式可从取值、运算顺序,运算结果及公式表示的意义等方面进行类比,教材中按章节(或单元)划分,可类比学习的地方有二十多处,在此不再一一赘述。
学习过程是个体主动认识和发展的过程,利用类比的方法,可使我们已有的经验和知识进行迁移,运用已有的知识和已掌握的方法探索处理新问题的途径,有利于形成自觉探索、自主解决问题的良好学习习惯,这些习惯和方法的形成,对于我们未来的发展也是终生获益的。
例如,可类比一元一次方程的解法,探索一元一次不等式的解法;类比整式的加减乘除运算,探索二次根式的加减乘除运算;类比分数的基本性质及应用,探索分式的基本性质及应用。此外,还可以通过类比的方法对数学教材中的题型归类,既可以把习题由多变少,从而减轻学习负担,又能锻炼和提高自己的思维能力,可谓一举两得。
四、学会转化
数学思想是人们对数学知识和数学方法的理性认识,是对数学知识,数学方法的高度抽象和概括。其中转化思想就是将一种研究对象在一定条件下转化为另一种研究对象的数学思想方法。通常有“未知”向“已知”的转化,“复杂”向“简单”的转化,“实际问题”向“数学模型”的转化,“一般”向“特殊”的转化等。转化思想几乎贯穿整个初中数学学习的全过程,是数学中的常规思想和基本方法,在数学学习过程中,根据已有的知识和经验,通过观察、联想、变换等手段,把要解决的问题转化为已经解决或容易解决的问题,逐步形成自觉的转化意识,对解决问题能力的提高和良好思维品质的培养具有重要的作用。
(一)化“未知”为“已知”。数学这门学科具有系统性、层次性强的特点,绝大多数新知都是由它的先行旧知延伸和发展而来的,把新知识、新问题化归为旧知识、旧问题来解决,不但找到了解决问题的途径而且巩固发展了旧知识,能顺利实现“新知”向“旧知”的转化,“未知”向“已知”的转化。初中数学方程和方程组的解法,就是通过消元、降次实现“未知”向“已知”转化的。
(二)化复杂为简单。对于复杂抽象的数学问题,应用传统的思维方式问题容易受阻,或者解决起来十分麻烦,这就需要及时调整思维的方向,冲出常规思维的框框。灵活选取角度寻找解决问题的途径,把问题转化为新的可以解决的问题,达到化复杂为简单的目的。
例如:m为何值时,方程x+(m-5)x+1-m=0的一个根大于3,另一个根小于3。
若设x-3=t,则x=t+3,把x=t+3代入原方程得
t+(m+1)t+(2m-5)=0,这样把“一根大于3,另一根小于3”的情况就转化为“一根大于0,另一根小于0”的情况,由t1t2<0即2m-5<0,解得m<5/2
例如:从12点起,在什么时间,时钟的分针和时针第一次重叠。
这个问题从表盘的分格上或两针的夹角上考虑,是比较复杂的,如果把两针看士两个人,那么问题就转化为在环形跑道上的追及问题。
(三)化实际问题为数学模型。利用化归方法构造数学模型,解决学习、生产、生活中的实际问题,是学生必须具备的数学素养,也是培养学生创造性思维能力的重要途径。例如,在《正多边形和圆》一部分内容中有这样一个实际问题:“用美术瓷砖铺地面,’,解决这个问题,应舍弃材料的图案和质量,从数学的角度来考虑,就是选择什么形状的瓷砖铺地面。可以借助实际图形,结合已学过的正多边形的有关知识寻求合理答案,经过观察、对比可以发现,应选取正三角形、正四边形、正六边形的瓷砖铺地面。化归这个数学问题的实质是选取围绕角的顶点能拼成360°角的正多边形。再如20xx年中考23题。解答此题,就需要根据实际问题提供的数据,建立数学模型,转化成数学问题中的数量关系,根据抛物线的有关数学知识进行求解。
端外,转化的方式还有化抽象为具体,化形为数,化数为形,化一般为特殊等,不再赘述。
五、学会分析
在《大纲》和教育部《中考命题意见》中都强调在培养和考查学生“三大能力”的同时,着重培养和考查学生运用数学知识分析和解决实际问题的能力。在数学学习过程中,每一名学生都想知道,碰到一道稍复杂的题目,应如何着手思考,如何在较短的时间内找到正确的解题途径,并按照一定的逻辑关系将解题(证明)过程写出来。实践证明,学生们分析问题、解决问题的能力,在很大程度上依赖于是否学会分析。
分析就是把研究对象分解为它的各个组成部分、方面、因素、层次,然后分别加以研究,从而认识事物的基础或本质的一种思维方法。具体地说,分析法就是从数学题的结论出发,利用学过的公式、公理、定理或法则去推想使结论成立的条件,一旦这些条件具备,结论就成立。譬如要证明命题甲成立,就去寻找使命题甲成立的条件,若命题甲成立的条件可由已知条件直接推得,那么问题就解决了。如果所需的条件有一个或几个不在已知中,问题没有解决,可继续往下想,看已知中缺少的条件是否可直接由已知中具备的条件推出,如果可以,那么问题得以解决,如果还是不行,那就继续用同样的方法追溯,直到你所需要的某个条件已能由已知条件推得为止。简言之,分析法就是“执果索因”。
初中数学学习方法12
课前课上及课后
先来说说大家都熟知的一些学习方法,也是一些基本的方法,这些方法确实是一些好的方法,主要就是看大家能不能真正的做好这些事情。下面让我们来具体地看看。
课前:课前需要预习,预习需要我们去把接下来要上的内容整体上看一遍,然后找出其中的重点与难点,以及自己无法很好理解的内容,分别做上不同的标记,以便在上课的时候针对自己的问题去认真听课与重点理解。
课上:在上课的时候不太可能整节课都集中精神,这时候就更显现出我们课前预习的重要性了。我们需要在上课的时候集中精神听讲预习中所遇到的重点与难点,尽量地在课堂上去理解吸收。同时也可以看看老师讲的重点与自己课前预习所确定的重点是否一致。另外,对于老师重点讲解的东西需要做下相应的笔记,以便之后复习用。
课后:课后的复习一定要及时跟上,不仅当天要对学习的内容进行复习,在之后的几天里也应该要花一定的时间去复习,同时可以跟上一些练习进行检测与巩固。如果复习的时候发现还有不明白的地方,一定要及时的去询问老师或是其他同学,将其弄懂。
课前课上及课后三个步骤环环相扣,一定要把每一步都做到位。
提高作业效率
现在很多学生以及家长都反应说作业太多,来不及或是没有时间去完成作业,导致学习成绩不佳。但是我们应该要想一想,我们大家的'时间都是一样多的,而大家的作业也是一样多的,为什么有的人能够完成,而有的人不能够完成呢。这里就要说到学习的效率了,有的学生能够先复习,然后再做作业,做作业的时候集中注意力,能够很快速地完成。而有的学生就与之相反了,首先可能课上就没有听好,然后做作业之前也没有进行复习,而是直接开始做的,同时也可能是做作业的时候不够集中注意力,即使作业不是很多,也需要花很长的时间去完成。
其实这都是因为一种不好的学习习惯,导致了做作业的效率不高。那么我们应该如何去提高做作业的效率呢?下面我给出了几个建议,供大家参考一下。
一、要有端正的写作业的态度。
从思想上要认真对待,如果养成懒散的习惯了,以后问题就会更多,今日不努力,明日就会失去更多,再要改善起来,就更难了。因为一个好习惯的养成是要下决心去坚持的,虽然由于以前的习惯不好或者遗留问题太多导致在坚持的过程中会容易产生抵触的情绪,甚至有时还容易放弃,但是要知道,一旦好习惯养成之后,原来所经常遇到的问题就会越来越少,成绩也自然提高了起来。
二、注意力一定要集中。
不要在写作业的时候干其他的事或想其他事,一心不能二用。尽快地反作业做完了才能够去做别的事情。
三、要学会总结。
如果在看到题目后能很快反映出这题目所需要的知识点,那么做题速度就会提高,在做题之后也要总结一下思路。多总结一下会发现很多题目都有规律可循,这样可以起到事半功倍的效果,以后再碰到类似问题时,就可以很轻松了。
四、营造一个良好的写作业环境。
孩子写作业时尽量保持安静,书桌上除了放书、学习用品等之外,不要放其他的东西,以免分散他们的注意力。家长也不要过度的唠叨和训斥,要多鼓励孩子。
加强计算能力
计算一直是数学的一个核心内容,几乎每一个数学问题都需要通过计算。那么,计算的准确率就显得尤为重要了。想要提高数学成绩,计算的准确率是一定要提高的。那么如何提高计算的准确率呢?这里我也同样给出了几条建议。
一、强化学生的有意注意和良好的计算习惯
(1)仔细审题的习惯。拿到题目后认真审题,看清题目的要求,想明白过程中应该注意哪些问题。
(2)细心检查的习惯。先从思路上检查一遍看是否有遗漏,再将答案代回原来的问题验算。若为计算题则仔细检查每一个步骤。
(3)认真书写的习惯。书写要干净整洁,这样能使自己在做题时看清题目,避免错误的发生。
二、强化口算能力
任何计算都是以口算为基础的,口算能力的高低,直接影响到学生其它运算能力的提高。要提高口算能力,首先要抓好口算的基本训练,所以应当经常性的进行一些口算的练习。
三、速算巧算
平时在做计算的时候要注意运算技巧地运用,加快运算速度,特别是在分数计算的部分,有时候数字比较大比较多,通分将会很困难,这时可能把分母写成乘积的形式将是一种更好的选择。
四强化估算能力
很多的问题,特别是应用题,当看到问题后就能够大概地去估计一下结果大概会是一个什么范围的数,有了这种估计能力之后,有时候发生计算错误就能够一下子看出来。所以在做题之前我们也可以估计一下答案的范围,如果算得的答案不在这个范围,那就需要我们去检查了。
五、合理利用一些数的性质
比如说奇数乘以偶数一定是一个偶数,各位数字和是3的倍数的数一定能被3整除等等性质,都可以帮助我们对运算是否准确做一些辅助的判断。
说了这么多,总结起来其实也很简单,只要坚持一个好的学习习惯,做好复习总结与练习,那么数学学习就能够事半功倍,学好数学自然也就不在话下。
初中数学学习方法13
要想取得好成绩,一个科学的数学学习方法是十分重要的。那么,科学的学习方法在课内课外需要注意些什么呢?
最重要莫过于善于思考,思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于思考,经常开动脑筋的习惯,于是脑子就越用越灵,勤于思考变成了善于思考。其次,培养创造精神也十分重要,所谓创造,就是想出新办法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,在听懂了老师讲的方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界。 当然,你要把以上那些东西做好,没有扎实的基础是不行的,所以,你必须先做到以下几点:
第一,认真听老师讲课。这是取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差。
其次要专心凝听老师讲的每一个字,因为数学是以严谨著称的.,一字之差就非同小可。听讲时还要注意记笔记。上课还要积极举手发言,举手发言的好处可不少!
1可以巩固当堂学到的知识。
2锻炼了自己的口才。
3那些模糊不清的观念和错误能得到老师的指教。真是一举三得。
总之,听讲要做到手到、口到、眼到、耳到、心到。、 在做家庭作业时,要注意解题的精度和速度。精度就是准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。经常这样做,在开始做作业时定好闹钟,放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张了。
如果课余有多余时间的话,则应当多做做课外练习。孔子曰:“学而时习之,不亦乐乎”。 做这类题,尽可能自己独立思考,努力找出隐藏的条件,这是解题的关键。如果实在想不出来就需要看一看参考书,以及请教家长和老师。总之,要做到多看、多做、多问、虚心、勤奋,保持积极向上的精神这才是关键的关键。
初中数学学习方法14
1、上好课。
学生获取知识的主要途径是课堂,要想上好每一节课,必须做到课前先预习。预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。具体的预习方法:将书上的内容预习完,画出知识点,及自己不理解的部分内容,整个过程大约持续10-20分钟。在时间允许的情况下,还可以将练习题做完。
2、做好题。
让数学课学与练相结合。在数学课上,光听是没用的。当老师让同学去黑板上演算时,自己也要在草稿纸上练。因为时间的限制,一般做好与知识点有关的两道练习题即可,如果遇到不懂的难题,一定要提出来,正式作业也没有必要完成大量的习题,只需要完成与课本知识点有关的两道题训练即可。
3、勤思考。
数学学习的发展归根结底是思维的发展,通过“思考”可以让学生养成“动脑”的`习惯,当然不一定是思考三分钟,也可能看到题目后马上得出做题方法,也可能是半个小时也想不出解题的方法和思路,这就需要经常思考,养成良好的做题习惯,勤于动脑,提高自己的思维能力。
4、勤复习。
写完作业后对当天老师讲的内容进行梳理复习,也可以在单元结束后进行复习和检测。随时了解近期的学习情况。其实分数代表的是你的过去,关键是通过每次考试总结经验、吸取教训,也是为了让你在期中、期末考得更好。老师通常会在没通知的情况下进行考试,所以要及时做到“课后勤复习”。
5、会作业。
从思想上要认真对待,如果养成懒散的'习惯了,以后问题就会更多,今日不努力,明日就会失去更多,再要改善起来,就更难了。
因为一个好习惯的养成是要下决心去坚持的,虽然由于以前的习惯不好或者遗留问题太多导致在坚持的过程中会容易产生抵触的情绪,甚至有时还容易放弃,但是要知道,一旦好习惯养成之后,原来所经常遇到的问题就会越来越少,成绩也自然提高了起来。
初中数学学习方法15
学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。
如何对待考试
功夫用在平时,考前不搞突击,考试中需要掌握的内容应该在平时就掌握好,考试前一天晚上不搞疲劳战,一定要休息好,这样,在考场上才能有充沛的精力,考试时还要放下包袱,驱除压力,把注意力集中在试卷上,认真分析,严密推理。
应试需要技巧,试卷发下来后,应先大致看一下题量,大概分配一下时间,做题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑,一道题目做完之后不要急于做下一道,要再看一遍,因为这时脑中思路还比较清晰,检查起来比较容易,对于有若干问的解答题,在解答后面的`问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处(当然是题目要求证明的),也是可以运用的。
考试时要冷静,有的同学一遇到不会的题目,脑袋立刻热了起来,结果,心里一着急,自己本来会的也做不出来了,这种心理状态是考不出好成绩的,我们在考试时不妨用一用自我安慰的心理:我不会的题目别人也不会,(俗称精神胜利法)或许可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。
【初中数学学习方法】相关文章:
初中数学的学习方法01-12
初中数学学习方法04-25
初中数学学习方法12-11
初中数学学习方法03-13
初中数学学习方法11-29
初中奥数学习方法08-22
初中数学学习方法05-20
初中数学学习方法11-20
经典的初中数学学习方法01-15
(精选)初中数学学习方法10-24