五年级下册长方体的体积教学设计

时间:2025-03-05 10:05:20 赛赛 初中知识 我要投稿
  • 相关推荐

五年级下册长方体的体积教学设计(精选11篇)

  作为一名辛苦耕耘的教育工作者,有必要进行细致的教学设计准备工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编精心整理的五年级下册长方体的体积教学设计,仅供参考,欢迎大家阅读。

五年级下册长方体的体积教学设计(精选11篇)

  五年级下册长方体的体积教学设计 1

  【教学内容】

  北师大版小学数学五年级下册第四单元第41-42页《长方体的体积》。

  【教材分析】

  《长方体的体积》是北师大版小学数学五年级下册第四单元第41-42页的内容,本节课是在学生已掌握了体积概念和体积单位的基础上进行教学的,学习它为今后学生学习圆柱体体积的计算打下基础。它是旧知识的延伸,又是新知识的辅垫,起到承前启后的作用。长方体体积的计算公式来源于生活又在生活实践中有着广泛的作用。

  【教学目标】

  知识技能:结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积。解决一些简单的实际问题。

  方法过程:在观察、操作、探索的过程中,提高动手操作能力,进一 步发展空间观念。培养学生动手操作、抽象概括、归纳推理的能力。

  情感态度:激发学生学习数学、发现数学的兴趣,学会与人合作。

  【教学重、难点】

  理解长方体和正方体体积计算公式的推导过程。能正确计算长方体和正方体的体积

  【教具准备】

  多媒体课件、一立方厘米的小正方体

  【教学方法】

  猜想——操作——验证

  【教学过程】

  课前交流:同学们,今天有这么多的老师与我们学习,让我们用热烈的掌声欢迎他们的到来。你们的掌声好热情啊!等会你们也要用这股热情投入到学习中去,认真听讲,积极思考,大胆发言,让我们的智慧树上结出丰硕的果子。为了鼓鼓我们的学习劲头,咱们来喊喊咱班的学习口号:智慧树上智慧果,智慧树下你和我。智慧树前共努力,快乐多又多,耶!

  一、创设情景,引发思考

  1、谈话激趣,引发思考。

  师:同学们,今天老师带来了两位“老朋友”来到咱们教室,你们想不想知道它们是谁?

  生:想

  师:(多媒体出示一个长方体和一个正方体)请看,它们是谁?

  生齐答:长方体和正方体

  师:哪位同学给大家介绍一下你们的“老朋友”有什么特征?

  生:长方体有6个面,8个顶点,12条棱,每个面是长方形,也可能有2个相对的面是正方形,相对的面面积相等,相对的棱长度相等。

  生:正方体有6个面,8个顶点,12条棱,每个面都是正方形,6个面的面积都相等,所有的棱都相等。

  师:介绍得真详细,真不愧是它们的好朋友呀!同学们,刚才我们在来的路上,长方体和正方体它们为谁的体积大而争吵,现在还没分出胜负,你们能不能帮忙评判一下?猜猜谁的体积大。(生各抒己见)

  2、揭示课题,引入新课。

  师:到底是谁的体积大呢?我们通过计算它们的体积就能知道。这节课我们一起探究长方体的体积。(板书:长方体的体积)

  二、动手操作,提出猜想

  1.生动手操作:以小组为单位,利用手中的长方体动手比一比,观察思考,发现了什么?

  师:同学们,长方形的面积与长和宽有关,长方体的体积可能与什么有关系?请大家利用手中的三个长方体小组合作比一比,观察思考,发现长方体的体积与什么有关系?

  生1:长方体的体积与长有关系,两个长方体的宽、高一样,长越长,体积越大。

  生2:长方体的体积与宽有关系,两个长方体的长、高一样,宽越长,体积越大。

  生3:长方体的体积与高有关系,两个长方体的长、宽一样,高越长,体积越大。

  生4:长方体的`体积与长、宽、高都有关系。

  2.课件演示,加深印象。

  师:同学们,你们真会发现问题,都是爱动脑筋的好孩子。请大家看多媒体演示。(多媒体演示课本41页想一想中的三组长方体,教师一边说明:长、宽相等的时候,越高,体积越大;长、高相等的时候,越宽,体积越大;宽、高相等的时候,越长,体积越大;)

  三、实践操作,推导公式。

  (一)探索长方体的体积计算公式

  1.生动手操作:以小组为单位,用一些棱长是1厘米的小正方体摆出4个不同形状的长方体,记录它们的长、宽、高,填写导学案探究活动(一)。

  师:通过刚才的探索,我们知道长方体的体积和长、宽、高都有关系,那他们之间到底有什么样的关系呢?(手举起一个棱长为一厘米的小正方体)这是棱长为一厘米的小正方体,老师给大家准备了一些这样的小正方体,已经放在你们各小组长的手中,等会你们每小组利用这些小正方体摆出3个不同的长方体,并把它们的长、宽、高记录在探究活动(一)的表格中(多媒体出示要求)。

  附探究活动(一):

  探究活动(一)长方体的体积

  用一些相同的小正方体(棱长1厘米)摆出3个不同的长方体,记录它们的长、宽、高,并完成下表。

  长/cm 宽/cm 高/cm 小正方体数量/个 体积/cm3

  第1个长方体

  第2个长方体

  第3个长方体

  学生活动:以小组为单位,动手操作记录。

  师:请同学们认真观察这些数据,小组讨论:长方体的体积与长、宽、高的关系。

  学生活动:以小组为单位讨论,并把讨论结果填写在表格中。

  附观察思考:

  观察思考:(1)长方体的体积与它的长、宽、高有什么关系?

  (2)长方体的体积=( )

  2、归纳长方体体积计算公式

  师:完成的请把你们的成果张贴在各自的小黑板上。哪个小组愿意分享你们的智慧结晶?(多请几个小组汇报)

  (小组综合汇报交流)

  生:我们组通过讨论认为:长方体的体积=长×宽×高

  师;其他小组的答案和他们的一样吗?

  生:一样。

  师:同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,这是一个了不起的好方法,在今后我们同样可以采用这种方法来学习。现在我们再一起来归纳一下长方体的体积计算公式。

  板书:长方体的体积=长×宽×高

  如果长方体体积用V表示 长用a表示,宽用b表示 高用h表示,长方体的体积公式用字母表示V=a×b×h= abh

  3、验证训练。(多媒体出示练习题)

  一个长方体长7厘米、宽4厘米、高3厘米,它的体积是多少立方厘米?

  师:我们推导出长方体的体积公式了,能不能利用公式解决问题呢?(能)请大家完成这道题,愿意在小黑板展示的请到小黑板完成,其他同学先自己完成,然后组内交流。

  学生活动:完成交流

  师生共同订正。

  (二)探索正方体的体积计算公式

  师:长方体的体积公式我们推导出来了,那么正方体的体积公式呢?请大家根据探究活动(二)小组讨论交流。

  附探究活动(二):

  探究活动(二)正方体的体积

  1、正方体和长方体有什么联系和区别?

  2、你能写出正方体的体积公式吗?

  正方体的体积=( )

  学生活动:小组合作,通过类比推理,探究正方体体积的计算方法。

  师:请把你们的成果张贴在各自的小黑板上,哪个小组愿意先汇报你们的研究成果?

  学生活动:小组综合汇报交流。

  师:(多媒体动态演示正方体体积公式推导过程加深理解)。

  验证训练:(每小组派一个代表在小黑板展示,各小组长根据答案互批)

  一块正方体石料,棱长是10dm,这块石料的体积是多少立方分米?

  (三)解决问题,及时巩固。

  (1)利用公式,回归解决“猜想”。

  师:同学们,经过大家观察、操作,探索得出了长方体和正方体的体积公式,那快来帮帮我们的“老朋友”吧!(课件出示“老朋友”)请计算它们的体积。(生:不能计算)为什么?(生:不知道长、宽、高是多少)你们真棒!是的,要求长方体的体积必须知道长、宽、高。(再次出示长、宽、高有数据的“老朋友”)这样能计算了吧!

  (2)验证比较“猜想”。

  学生活动:每小组派两位同学在小黑板展示,然后集体交流。

  (指名说明解法)

  四、 变式练习,巩固提高

  1.我能判(判断对错)。

  (1)一个棱长为6分米的正方体,它的表面积和体积相等。( )

  (2)一个长方体,长5分米,宽4分米,高3厘米,它的体积是60立方分米.( )

  (3)一个正方体的棱长是2米,它的体积是8立方米。( )

  (4)3n=n x n x n( )

  (5)一个长方体,长、宽、高都扩大2倍,体积也扩大2倍( )

  2.我会做(解决实际问题)。

  (1)一种长方体木料,长9dm,宽6dm,高2dm.,8根这样的木料体积是多少?

  (2)一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

  说明:此环节的习题都印成学习单,课前发到学生手中。第一题请一位同学当小老师读题,每读一小题,其他同学用手势代替对或错;第二题每小组派两位同学在小黑板上板演。

  五、总结反馈,自我评价。

  谈谈本节课你有什么收获?

  六、布置作业

  1.求下列图形的体积(单位:分米)

  2 .将一个长10厘米、宽8厘米、高6厘米的长方体截成一个体积最大的正方体,这个正方体的体积是多少?

  【板书设计】:

  长方体的体积

  长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长

  V= a×b×h V=a×a×a

  =abh =a3

  五年级下册长方体的体积教学设计 2

  教学目标:

  知识目标:

  探索并掌握长方体、正方体体积的计算方法,能正确熟练计算长方体、正方体体积。

  能力目标:

  在观察、操作、探索的过程中,提高动手操作的能力,进一步发展空间观念。

  情感目标:

  学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的`实际问题。

  教学重点、难点:

  在观察、操作、探索的过程中,找出长方体的计算方法。

  教学策略:教师引导学生进行自主探究。

  教学准备:长方体模型多个、直尺等.

  教学过程:

  一、导入新课:

  同学们上节课我们学习了”,长方体的体积长方体的体积的计算方法“那个同学起来说一下?多让几个同学回答。

  二、教学新知:

  1、让学生摆出第1题的图形先让学生数出图形体积是多少立方厘米,再用公式计算出结果进行验证。

  2、第2题让学生利用计算公式计算体积。

  (1)一个长方体,长20厘米,宽12厘米,高5厘米

  (2)一个正方体,棱长是6分米。

  (3)一个长方体,底面积是60平方厘米,高7厘米。

  (4)一个长方体,底面是边长为2分米的正方形,高5分米。

  学生独立计算,集体订正。

  3、第4题:首先让学生多读几遍题理解题意,再计算。

  大的体积除以小的体积等于牙膏合数。

  4、第5题要让学生明白一个长方体截成一个体积最大的正方体,必须知道棱长是最短一条边,即:3×3×3=27(立方厘米)

  5、第7题:计算结果是立方分米必须换算成容积单位。

  三、课堂练习:

  教科书49页第6、8题

  四、课堂小结:

  学习了这节课,同学们有什么感受和体会?

  板书设计:

  一个长方体,长20厘米,宽12厘米,高5厘米

  一个正方体,棱长时6分米。

  一个长方体,底面积是60平方厘米,高7厘米。

  一个长方体,底面是边长为2分米的正方形,高5分米

  五年级下册长方体的体积教学设计 3

  教学目标:

  1、在理解了长正方体体积公式,能运用公式进行计算的基础上,进一步研究求长正方体体积的其它计算公式。

  2、进一步培养学生空间观念和空间想象能力。

  教学重点:

  1、计算长正方体体积的其它公式。

  2、逆向思维的题可以用方程方法解。

  教学难点:

  几何知识与一般应用题的综合题。

  教学过程:

  一、复习检查:

  如何计算长正方体的体积?及字母公式

  长方体的体积=长×宽×高正方体体积=棱长×棱长×棱长

  二、新授:

  长方体或正方体底面的面积叫做底面积。

  长方体和正方体的底面积怎样求呢?

  长方体的体积=长×宽×高正方体体积=棱长×棱长×棱长

  底面积底面积

  所以长正方体的体积也可以这样来计算:长正方体的体积=底面积×高v=sh

  三、巩固练习:

  1、长方体的底面积是24平方厘米,高是5厘米。它的体积是多少?

  v=sh24×5=120(立方厘米)

  2、一根长方体木料,长5厘米,横截面的面积是0.06平方厘米。这根木料的体积是多少?

  理解横截面积的含义,体会长方体不同放置,说法各不相同。

  出示另一种计算方法:长方体体积=横截面积×长

  3、家具厂订购500根方木,每根方木横截面的面积是24平方分米,长3米。这根木料一共是多少平方米?

  理解面积单位和长度单位要一致。但不可能相同。

  5、练一练:用方程法。

  (1)、一块长方体的木板,体积是90立方分米。这块木板的长是60分米,宽是3分米。这块木板的厚度是多少分米?

  (2)、一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少?(选择方法解答)

  1、学校要修长50米,宽42米,的长方形操场。先铺10厘米的.三合土,再铺5厘米的煤渣。需要三合土和煤渣各多少立方米?

  2、有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。

  3、用15根规格完全相同的木板堆成一个体积是3.6立方米的长方体。已知每根木板宽0.3米,厚0.2米,求每根木板的长。

  四、小结:今天,我们又学了哪些知识?你有什么收获?

  五、作业:

  五年级下册长方体的体积教学设计 4

  教学目标:

  1、在操作中,感知出长方体的体积大小与它的长、宽、高等有关,长方体的体积。

  2、能运用长、正方体的体积公式,计算长、正方体的体积。并能运用所学知识解决一些实际问题。

  3、借助学生自己的动手操作、动口表述及课件的动态演示,培养学生的空间观念。

  教学重点:

  体积公式的运用及公式的推导过程。

  教学难点:

  体验公式的推导过程。

  教学过程:

  一、比较大小,复习引入

  1、比一比。出示书包、文具盒。问:谁大?谁小?

  其实刚才我们在比他们的什么?体积指的是什么?

  2、说出下列图形的体积是多大?你是怎么想的?(都是有棱长为1分米的正方体拼成的)

  小结:要知道一个物体的体积,只要知道这个物体含有多少个这样的体积单位。

  3、出示橡皮。问:什么形状?它有体积吗?体积多大?请你估一估,猜猜它有多大?

  4、揭示课题。

  二、动手操作,感知认识

  1、拿出12个1立方分米的正方体,小组合作摆一个长方体,并说说它的长、宽、高是多少?体积是多大?

  2、汇报交流。问:你们组摆的长方体的长、宽、高是多少?你能说说你们组是怎样摆的吗?体积是多少?

  还有不同的摆法吗?(学生边说,老师边演示四种不同的摆法)

  3、观察发现:通过刚才的摆,观察这些数据,你发现了什么?

  4、再一次合作摆,小学数学教案《长方体的体积》。边摆边说你们组摆的长方体的'长、宽、高是多少?又是怎么摆的?

  三、启发探究,自主建构

  1、出示长5分米、宽3分米、高2分米的长方体。

  问:要摆成这样的长方体需要多少个棱长为1分米的正方体?体积是多少立方分米?你能利用手中的学具摆一摆吗?(开始活动,发现不够摆)

  问:不够,怎么办?你能在头脑中想象,把它补充完整吗?(又开始活动)

  2、汇报交流。并演示摆的过程。

  3、出示长8分米、宽4分米、高3分米的长方体。你能摆这个吗?

  4、听要求摆。

  (1)自己摆一个长6分米、宽3分米、高2分米的长方体,并说说它的体积。

  (2)想象一个9米、宽7米、高4米的长方体,并说说它的体积。

  5、思考总结。体积与长、宽、高有怎样的关系呢?并快速验证黑板上的数据。

  四、解决疑难,运用拓展

  1、解决橡皮的体积。要求它的体积,需要知道什么?师提供测量数据,让学生求体积。

  2、自己求数学书的体积。

  3、出示:亚光纸箱厂生产一种正方体纸板箱,棱长是8分米。体积是多少立方分米?

  4、小结正方体的体积公式。

  五、全课总结

  长方体的体积

  五年级下册长方体的体积教学设计 5

  教学目标:

  1、通过实践操作,使学生理解体积的含义,建立体积的概念。

  2、初步认识常用的体积单位:立方米、立方分米、立方厘米,掌握常用的体积单位和体积单位的量的特征,能正确选择和使用体积的单位。

  3、通过学生的动手实践,加强学生的空间观念。

  教学重点:

  形成体积的概念和掌握常用的体积单位。

  教学难点:

  形成体积概念。

  教学用具:

  盛有红色水的大玻璃杯两个,大小石头各一块,;1立方米的木条棱架一个;体积是1立方分米、1立方厘米的正方体各一个。两人一份学具(1立方分米和1立方厘米的正方体模型);三把米尺等。

  教学过程:

  一、依据预习提纲,自主学习。

  1.什么是体积?

  2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.拼成了一个什么形体?(长方体)这个长方体的体积是多少?(4立方厘米)

  3.常用的体积单位有哪些?你能想像或比划一下他们个个有多大吗?

  4.长方体的体积公式是什么?

  5.正方体的体积公式是什么?

  6.光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  7.讨论长方体和正方体的体积计算方法是否相同.

  二、探索研究,交流展示。

  1.故事引入:出示主题图:乌鸦喝水的故事。

  自由:乌鸦是怎样喝到水的?为什么?

  2.学生实验:

  取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?(第一杯的水不能倒入第二杯,因为鹅卵石占据了一部分空间。)

  3.课件出示:比较观察:电视机、影碟机、手机,哪个所占的空间大?

  不同的物体所占空间的大小不同。

  4.体积概念的引入:物体所占空间的大小叫做物体的体积。(板书课题:体积)

  加深理解:

  师:“拿出你们的书包或新华字典,摸一摸它们的大小,感觉一下自己书包或新华字典体积的大小。”

  师:“想一想,你能用手比划着告诉你的同桌,你的书包或字典有多大吗?试一试。”

  学生活动后,点同学分别到讲台上比划着告诉大家自己的书包或字典的大小。

  师:“你们知道他们的书包有多大了吗?”

  师:“谁能用打电话的形式告诉我,他们的书包有多大?”

  师:“想出办法来了吗?其实我们不是没有办法,请同学们打开课本第39页,看一看书,再想一想,然后大家议一议,找到方法了就告诉老师一声。”

  三、体积单位的认识:(学生先看书自学,再交流。)

  1.我们已经学过哪些长度单位和面积单位?

  2.出示两个长方体:怎样比较这两个长方体体积的大小呢?

  3.根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?

  介绍体积单位,常用的体积单位有:立方米(m)、立方厘米(cm)。

  4.认识:1立方米、1立方分米、1立方厘米的体积各有多大。

  我们规定:棱长是1厘米的正方体的体积是1立方厘米。

  1立方厘米:

  ①让学生拿出1立方厘米的小正方体并量出它的棱长。

  ②看看我们身边的什么的体积大约1立方厘米。(约一个手指尖的'大小)

  1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。(约一个粉笔盒的大小)

  1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。

  我们生活中,哪些物体的体积大约1立方米?

  5.再次感觉体积计量单位的实际大小:

  “你们能用1立方厘米、1立方分米和1立方米等常用的体积单位来描述物体的大小吗?试一试估计一下身边物体的大小。”

  学生交流尝试用体积单位描述身边物体的大小。实际比划大小,同桌互相说说。

  6.练习:

  (1)完成p40“做一做”t1。

  说一说分别是用来计量什么的单位,它们有什么不同?

  长度单位、面积单位、体积单位的联系与区别。

  (2)完成p40“做一做”t2。

  让学生说一说解题的根据是什么?进而使学生深化对计量一个物体的体积,要看这个物体含有多少个体积单位的意思的理解。

  四、反馈检测

  1.口答填表.

  长方体长/分米宽/分米高/分米体积(立方分米)

  5 1 2

  4 3 5

  10 2 4

  正方体棱长/米体积(立方米)

  6

  30

  0.4

  2.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

  3.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

  教学设计:

  体积和体积单位

  常用的体积单位有:立方米(m)、立方分米(dm)、立方厘米(cm)。

  棱长是1厘米的正方体的体积是1立方厘米。

  课后反思:

  小学生对概念的掌握与他们的知识水平、生活经验有很大的关系。因此在教学体积单位时,采取尝试自学课本,理解体积单位,培养学生空间观念。首先让学生看书自学体积单位,以小组为单位,交流合作,其次让学生汇报学会的知识。最后理解体积单位,效果不错。

  五年级下册长方体的体积教学设计 6

  一、教材分析:

  本课内容来自人教版小学数学五年级下册第三单元《长方体和正方体》。长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。

  二、教学目标:

  1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。

  2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。

  3、培养学生数学的应用意识。

  重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。

  难点:理解体积公式的意义。

  三、教法与学法

  学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。

  为了实现教学目标,本课以学生动手操作,合作交流与探究为主,教师同时配合多媒体课件演示,指导学生自主学习.

  四、教学过程

  (一)激情引趣,揭示课题。

  任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。

  1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。

  2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。

  这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。

  (二)操作想象,探索公式。

  小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。

  具体的过程是:

  (1)让学生以小组为单位用棱长1厘米的小正方体摆长方体,边摆边在表格里记录:长、宽、高和体积

  (2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。

  (3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?

  这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。

  (4)用字母表示公式,要注意书写形式的指导。

  (5)完成例1,学以致用,加深理解。

  通过前面的学习学生已经知道了正方体是特殊的.长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。

  (三)巩固练习,扩展应用

  练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:

  1通过让学生完成教科书第43页的“做一做”的第一题,先让学生动手操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。

  2.做第43页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。

  拓展运用:

  完成练习七第5—8题,让学生运用公式计算。

  设计意图:学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手操作和解决实际问题的能力。

  (四)总结全课,质疑解惑。

  (1)谈收获:让学生说说这节课学习了什么?

  (2)质疑解惑:还有什么疑问。

  这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。

  五年级下册长方体的体积教学设计 7

  教学内容:

  人教版数学第十册第29页——30页的内容及相应的练习题。

  教学目的:

  1、通过实验探究长方体的体积计算公式,并能应用公式解决相应的实际问题。

  2、让学生经历长方体体积公式的推导过程,理解体积计算公式。

  3、培养学生动手拼摆能力,观察、归纳推理能力。

  教学重点:

  体积公式的推导过程、体积公式的应用。

  教学难点:

  体积公式的推导过程(每排个数、排数、层数和长方体长、宽、高之间的关系)。

  教学准备:

  学生分成2人小组,每组准备一些数量的小正方体、练习题单。

  教学过程:

  一、直接导入

  师:前面我们学习了常用的体积单位,今天我们来探究长方体的体积求法。

  板书:长方体的体积。

  二、猜测、为学生指名探究方向

  1、课件出示:一个长方体。师:你有什么方法能知道这个长方体的.体积?

  2、课件演示:把长方体切割成一个个的小正方体,数出每排个数、排数和层数;并用每排个数×排数×层数=总个数(即体积数)。

  3、师:

  (1)数小正方体个数的方法能解决所有的长方体体积问题吗?看来有必要得出一个求长方体体积的计算公式。

  (2)猜测一下长方体的体积可能和长方体的什么有关?

  4、课件演示,让学生理解长方体的体积与长方体的长宽高都有关系。

  三、探究体积公式推导过程

  1、师:接下来我们就一起用小正方体通过拼摆,来探究一下长方体的体积和长宽高之间到底有什么关系。

  2、同桌合作:课件出示:合作要求:

  (1)齐读要求。

  (2)先摆,再观察,最后再填表。

  3、学生动手操作,教师巡视指导。

  4、全班交流:

  (1)小组汇报结果。

  (2)观察表格思考:你有什么发现?同桌先互说。

  (3)全班交流发现。

  (4)师补充提问:每排个数、排数、层数和长方体的什么有关系?它们之间有什么关系呢?

  结合学生的回答,观察一个摆好的长方体,理解每排个数、排数、层数和长宽高之间的对应关系。并多抽几个学生说说它们之间的关系。

  5、师:你能推导出长方体的体积计算公式了吗?学生回答,教师适时板书:长方体的体积=长×宽×高;V=abh。

  6、回顾刚才的推导过程,同桌互说。

  7、及时练习:出示一个长方体的文具盒。

  师:要求这个长方体文具盒的体积要知道什么条件?教师给出长宽高,学生计算,强调书写格式。

  四、课堂练习

  1、口算填表(见题单)。

  2、小法官:

  (1)两个体积相等的长方体,它们的长宽高一定相等。()

  (2)一个长方体的长宽高都扩大到原来的2倍,它的体积就扩大到原来的2倍。()

  3、建筑工地要挖一个长50米,宽30米,深50厘米的长方体土坑,一共要挖出多少方的土?(在工程中,1m3的土、沙、石等均简称“1方”)

  4、考考你:下列长方体的体积各是多少立方厘米?(小正方体的棱长1厘米)(见题单)

  五、小结下课

  通过学习,你有什么收获?(方法和知识两个方面来说)板书:长方体的体积长方体所含体积单位的数量=每排个数×排数×层数;长方体的体积=长×宽×高;V=abh。

  课后反思:

  1、对推导过程的关键地方突出不够,即,每排个数、排数、层数与长方体的长宽高的关系理解说理不够,应该让学生多说,还可以通过课件演示一下。

  2、教师语言还不够准确、精炼,提出的数学问题还可以更加准确具有指向性,对于关键地方的引导还不够合理。

  3、应该板书出:1立方米=1方。加强学生对两个单位关系的理解。

  4、本节课对于时间的安排差不多,比以前的课堂要合理得多,基本上是按照预定的时间完成的,这是我本节课最满意的地方。

  五年级下册长方体的体积教学设计 8

  一、教学目的:

  1.通过学生的自主发现掌握长方体的特征,会辨认长方体。

  2.培养学生动手操作的能力,观察能力和抽象、概括能力。

  3.精心组织学生活动,激发学生学数学的兴趣,体现数学充满着探索与创新,感受数学的严谨性以及数学结论的确定性。

  二、教学重点:

  掌握长方体的特征。

  三、教学难点:

  建立立体图形的空间观念。

  四、教具准备:

  教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。

  学具:长方体和正方体的纸盒。

  五、教学过程:

  1.分类、操作、引出新知

  (1)教师出示一幅图:你能将它们根据一定标准分类吗?

  (2)师生共同概括:像粉笔盒等长方体和正方体,和排球、土豆等都占据一定空间把它

  们称为立体图形。

  请同学们说说在日常生活中哪些物体的形状是长方体。

  (板书:长方体的认识)

  长方体我们从哪些方面来认识呢?

  (3)拿出一块橡皮,横切一刀,露出一个面,让学生触摸,并说说感觉,教师明确这部

  分叫面。再切一刀,再让学生触摸两面相交的线,说出感觉,明确这在立体图形中叫做棱。

  什么叫棱?

  将橡皮的一个面扣放在桌面上,与两个面垂直再切一刀,触摸三条棱相交的点,说出感

  受,明确它叫顶点。什么叫顶点?

  (4)找实物指出它的长、宽、高。

  今天,我们就从面、棱、顶点三个方面来学习长方体的认识。

  2.实践操作,探究新知

  (1)认识长方体的特征。

  那么长方体的特征是什么?请同学们自己数一数、量一量、比——比后,完成表格。

  (提示:放手让学生运用各种感官和学习用具独立探究、自主发现面、棱、顶点的知识。)

  (2)教师巡回指导,指导要点如下:

  ①数面、棱、顶点时,如何数比较科学。

  ②采用多种学习方法。

  (提示:如测量、计算、比较及用身体某个部分去接触面、棱、顶点等。)

  ③独立填写“我的发现”一表。

  面

  棱长

  顶点

  (学生在学习时,采用动手实践,自主探索,多种学习方法,既学到了知识又培养了能

  力。)

  汇报:师生共同归纳。

  (除了各部分的'数量外,还要引导学生认识。)

  a.按棱的长度可分为3组,每组内4条棱平等且长度相等;

  b.相交于一个顶点的棱有3条,长度不一定相等;

  c.相交于一个顶点的3条棱的长度分别叫长方体的长、宽、高;

  d.长方体的形状、大小是由长方体的长、宽、高决定的;

  e.面的特殊情况。

  完成做一做,反馈订正。

  小结。

  五、课堂练习:

  基础练习

  拿一个火柴盒量一量,它的长、宽、高各是多少?然后说一说每个面的长和宽是多少?

  计算棱长总和。

  综合练习

  (1)长方体的六个面一定是长方形。 ( )

  (2)长方体的三条棱长的长度分别叫做长方体的长、宽、高。 ( )

  (3)有六个面、十二条棱、八个顶点的形体一定是长方形。( )

  (4)长方形纸是长方形不是长方体。 ( )

  (5)有6个面,且6个面都是长方形,它一定是长方体。 ( )

  实践与应用

  (1)一个长方体的棱长总和是96厘米,已知长是8厘米,高是7厘米,宽是多少厘米?

  (2)用一根168厘米的铁丝,焊接成一个长方体教具,长20厘米,宽12厘米,它的高是多

  少厘米?

  (3)用一根长100厘米的铁丝,做成一个长·9厘米,宽6厘米,高4厘米的长方体后,还

  剩多少厘米?

  五年级下册长方体的体积教学设计 9

  [教学目标]

  1、在具体的情境中自主探索并掌握长方体体积公式,能应用公式正确计算长方体体积,并解决一些简单的实际问题。

  2、通过操作、观察、猜想和归纳等数学活动,经历体积公式的探索过程,不断积累立体图形的学习经验,增强空间观念,发展数学思维。

  3、进一步体会数学与实际生活的联系,获得学习成功体验,激发数学学习兴趣。

  [教学准备]

  教师准备用1cm3小正方体拼摆成的长方体模型,长方体包装盒,多媒体课件;各小组准备1cm3的正方体和实验记录单。

  [教学过程]

  一、创设情境,导入新课

  谈话:上节课,我们已经认识了体积和体积单位。今天,老师带来了一个用1cm3的小正方体摆成的长方体(出示长4cm、宽3cm、高2cm的长方体模型),你有办法知道这个长方体的体积是多少立方厘米吗?

  明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。

  演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)

  揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)

  [设计意图:通过数一个长方体中含有的1cm3小正方体的个数,使学生进一步理解求一个物体的体积,就是求这个物体包含的体积单位的个数。同时也为后面有序地数出小正方体的个数作一些孕伏。]

  二、操作探究,发现规律

  启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?

  学生回忆后,电脑演示推导长方形面积公式的过程。

  出示长方体直观图,讨论:你认为,长方体的体积可能与它的什么有关?我们可以用怎样的方法研究长方体的体积?

  学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的'正方体,长方体中含有体积单位的个数就是它的体积。

  谈话:同学们的想法有没有道理呢?我们来看大屏幕,(多媒体演示)我们来想象一下:如果一个长方体的长增加或缩短,它的体积会怎样?如果改变它的宽或者高,体积会发生怎样的变化?

  谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。

  明确活动要求:

  (1)同桌合作,用若干个1cm3的正方体任意摆出4个不同的长方体并编上序号。

  (2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。

  (3)填完表格后,同桌核对数据,并交流自己的发现。

  学生按要求操作、交流,教师巡视。

  组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)

  板书:长方体的体积=长×宽×高。

  启发:同学们通过用1cm3的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。

  [设计意图:引导学生由探索长方形面积的经验,通过类比把探索平面图形面积的方法迁移到立体图形中来,既有利于培养学生初步的推理能力,也是具体的学习方法的指导;用1cm3的小正方体摆长方体的操作,旨在引导学生通过操作和交流,初步发现长方体体积与它的长、宽、高的关系,并在这一过程中,培养动手操作能力,发展数学思考,感悟归纳的思想方法。]

  三、再次探索,验证规律

  出示4×1×1的长方体图,谈话:这是一个长4cm、宽1cm、高1cm的长方体,你知道它的体积是多少吗?

  学生可能想到用4个1cm3的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm3;也可能用“4×1×1”算出它的体积。

  根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm3。(见图1)

  出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm3的小正方体,你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先在长方体上画一画,再和同学交流。

  提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)

  明确:在这个长方体中,沿着长一排可以摆4个1cm3的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。

  出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先试一试。

  反馈:这个长方体的体积是多少cm3?你是怎样想的?(学生的回答后,出示图3)

  提问:如果用的小正方体来摆第3个长方体,沿着长一排可以摆几个?沿着宽可以摆几排?沿着高可以摆几层?它的体积可以怎样计算?

  再问:如果有一个长方体,长5cm,宽4cm,高3cm,摆出这个长方体一共要用多少个1cm3的正方体?它的体积是多少cm3?

  引导学生用示意图表示出思考过程。

  [设计意图:对三个长方体的探究,引导学生经历了“想象—画图—说理”的过程,使学生随着排数、层数的递增,清晰地体会到长方体的体积与它的长、宽、高的关系。第4个长方体只给出了长、宽、高的数据,意在促使让学生依托已经获得的直观经验,将摆的过程内化为有序地算(数)的过程。至止,长方体体积计算方法已呼之欲出。]

  四、引导概括,得出公式

  提问:通过刚才的活动,你认为长方体的体积与它的长、宽、高有什么关系?我们前面提出的猜想正确吗?

  揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。

  讲解:如果用V表示长方体的体积,a、b、h分别表示长方体的长、宽、高,你能用字母表示出长方体的体积公式吗?

  板书:V=abh。

  和同桌说一说你还知道了什么?

  让学生口算各题的得数,并交流计算时的思考过程。

  五、巩固练习,应用拓展

  1、完成“试一试”。

  出示长方体的包装盒,谈话:刚开始上课,我们还不能求这个包装盒的体积是多少,现在你能解决了吗?要求这个长方体包装盒的体积,需要知道哪些条件?有办法知道这些数据吗?

  指导测量、记录数据后独立解答。

  出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm3?

  学生独立完成后,组织反馈。

  2、完成第26页“练一练”第1题。

  先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm3的小正方体摆成的。

  3、完成练习六第2题。

  出示题目,让学生自由读题。

  提问:计算冷藏车的容积,为什么要从里面量?

  学生独立完成计算,并组织反馈。

  六、全课小结,梳理学法

  提问:今天,我们一起学习了什么?通过这节课的学习,你有哪些收获?回顾这堂课的学习过程,我们是怎样探索出长方体的体积公式的?

  七、课堂作业

  练习六第1题。

  五年级下册长方体的体积教学设计 10

  一、教学内容:

  义务教育课程标准实验教科书数学五年级下册第三单元《长方体和正方体的体积》,教材41页42页。

  二、教材分析:

  学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上进行教学的。从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。

  三、教学目标:

  1、使学生经历长方体,正方体体积公式的推导过程,理解长方体、正方体体积的计算公式;初步学会计算长方体和正方体的体积;

  2、培养学生实际操作能力,同时发展他们的空间观念;

  3、在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

  四、教学重点:

  探索长方体体积的计算方法。

  五、教学难点:

  理解长方体和正方体体积公式的推导过程.

  六、教具准备:

  挂图,若干个1立方厘米小正方块

  七、学具准备:

  1立方厘米的正方体16块

  八、教学过程:

  一)创设情境,揭示课题

  1、实物引入

  上节课,我们认识了体积和体积单位,谁来说说什么是体积,体积单位有哪些呢?

  昨天的知识你掌握的很好,相信你,前置作业完成的也很认真吧?你准备了几个一立方厘米的小正方体啊?都摆成什么形状了?体积是多少呢?

  根据学生回答,其他学生也动手摆。

  你是怎样知道的?因为这个长方体由4个1立方厘米的正方体拼成,所以它的体积是4立方厘米。图下板书:4立方厘米

  如果再拼上一个1立方厘米的正方体,它的`体积又是多少呢?(学生操作)。

  再拼上一个1立方厘米的正方体,这个长方体就含有5个1立方厘米的正方体,它的体积就是5立方厘米。

  2、揭示课题,可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们就来学习怎样计算长方体和正方体的体积。(板书:长方体和正方体的体积)

  二)猜想验证,探究新知

  1、提出猜想

  你能不能摆出一个长方体,并计算它的体积?出示表格。学生四人一小组,每组一张表格。

  长宽高正方体个数体积

  长方体1

  长方体2

  长方体3

  长方体4

  请同学们一小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。

  学生活动,师巡视。小组汇报?学生黑板前展示表格,并做详细汇报。引导学生观察表格:观察表格中的数据,从中你能发现什么呢?通过观察比较,同学们有了一个大胆的猜想:长方体的体积等于它的长、宽、高的乘积。这个猜想是否正确呢?我们还要进一步研究。

  (板书:)长方体的体积=长×宽×高。

  2、验证猜想

  用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。

  1、长4厘米,宽1厘米,高1厘米。

  2、长4厘米、宽3厘米、高1厘米。

  3、长4厘米、宽3厘米、高2厘米

  三个不同的长方体,根据刚才的发现能猜出它们的体积吗?根据回答:4×1×1=4立方厘米4×3×1=12立方厘米4×3×2=24立方厘米

  那究竟对不对呢?让我们再来摆一摆。学生小组讨论,动手操作,师巡视。组织交流,课件出示拼摆后的图形。

  你是怎么摆的?体积是多少?和我们之前的猜想一样吗?

  那如果再给你一个长7厘米、宽4厘米、高3厘米的长方体,一共要用多少个1立方厘米的小正方体?它的体积是多少呢?出示例1

  7×4×3=84立方厘米,所以它的体积就是84立方厘米。

  3、概括公式

  根据刚才的验证,得出之前这个结论是正确的。长方体的体积=长×宽×高,如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高,你能字母表示长方体的体积吗?

  V=abh

  长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。

  学生汇报:

  因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

  出示正方体,出示公式。

  正方体的体积公式也可以用字母来表示。但用字母表示正方体的体积公式时,还有一些特殊的地方,书上对此作了详细的说明。请大家打开课本看一看。学生阅读课本。正方体的体积:V=a3

  强调写的时候,3要写在a的右上角,并且要写的小一些。

  小训练:完成例2,在练习本上完成,集体订正。

  三)巩固应用

  计算下面长方体和正方体的体积。

  1、长9厘米、宽6厘米、高5厘米

  2、长0.5米、宽2.5米、高0.8米

  3、棱长6分米

  四)课堂小结

  这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?

  五年级下册长方体的体积教学设计 11

  教学目标:

  1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。

  2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。

  3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。

  教学重点和难点:

  长方体和正方体体积的`计算方法,以及其体积公式的推导。

  教学过程:

  一、复习引入

  (1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?

  (2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?

  二、学习新课

  探究正方体体积公式:

  问:通过计算2号长方体的体积你们发现了什么?

  引导学生明确:

  (1)这个长方体长、宽、高都相等,实际上它是一个正方体。

  (2)正方体体积=棱长×棱长×棱长(板书)

  (3)如果用V表示正方体体积,用a表示它的棱长字母公式为:V=a

  教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)

  三、议一议

  长方体和正方体的体积公式有什么相同点?

  长方体和正方体底面的面积叫做底面积。

  长方体(或正方体)的体积=底面积×高

  如果用S表示底面积,上面的公式可以写成:

  V=Sh

  四、巩固练习

  计算下面图形的体积

  板书设计:

  正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高

  V=a3 V=Sh

【五年级下册长方体的体积教学设计】相关文章:

长方体的体积教学设计09-29

北师大版长方体的体积教学设计(通用22篇)01-18

人教版五年级下册草原教学设计07-30

五年级下册晏子使楚教学设计08-26

五年级下册童年的发现教学设计07-11

人教版五年级下册语文《桥》教学设计07-27

人教版五年级下册语文《景阳冈》教学设计09-03

人教版五年级下册猴王出世教学设计09-06

人教版五年级下册《刷子李》教学设计06-28