长方体的体积教学设计

时间:2025-01-18 15:14:50 赛赛 初中知识 我要投稿

北师大版长方体的体积教学设计(通用22篇)

  作为一位不辞辛劳的人民教师,有必要进行细致的教学设计准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么教学设计应该怎么写才合适呢?下面是小编为大家收集的长方体的体积教学设计,仅供参考,大家一起来看看吧。

北师大版长方体的体积教学设计(通用22篇)

  长方体的体积教学设计 1

  教学目标:

  1.理解并掌握长方体和正方体体积的计算方法.

  2.能运用长、正方体的体积计算解决一些简单的实际问题.

  3.培养学生归纳推理,抽象概括的能力.

  教学重点:

  长方体体积的计算方法.

  教学难点:

  长方体体积公式的推导

  教学过程

  一、激趣导入

  师:今天老师带了两个精美的礼品盒,喜欢吗?猜猜看,哪个礼品盒的体积大?

  生1:我猜蓝色礼品盒的体积大,因为它比较宽;

  生2:我猜黑色的礼品盒体积大,因为它比较长…

  师:看来仅靠观察我们能准确比较出礼品盒体积的大小吗?(不能)。该怎么办呢?(计算)

  师:这个主意不错!今天这节课我们就来研究长方体体积的计算。(板书课题)

  二、先学后教

  1、示自学指导(课件)

  小组合作摆出不同的长方体并在记录单上做好记录,摆好后仔细观察,思考:长方体的体积与什么有关?想好后在组内交流。(时间4分钟)

  2、学生按小组分工合作,二人拼摆长方体,一人记录,一人监督,探索长方体体积与什么有关?教师巡视指导。指两个小组到前面板演。

  3、组织学生汇报。

  生1:我们组摆了3个长方体,第一个长方体长4厘米,宽3厘米,高2厘米……我们组发现小木块的数量和长方体的.体积相等。

  师:能举例说明吗?

  师:还有哪个小组愿意来回报你们的发现?

  生2:我们组摆了3个长方体,第一个长方体长2厘米,宽3厘米,高3厘米,第2个长方体……我们组发现长乘宽乘高等于长方体的体积。例如第一个长方体的长2厘米,宽3厘米,高3厘米,用2×3×3=18,长方体的体积也是18立方厘米….;.)

  师:真会思考,将你们组的发现写在黑板上。还有哪个小组愿意汇报?

  其他组学生汇报。

  4、验证发现

  师:同学们都很善于观察思考,现在我们就重点看看第2小组的发现。他们组摆了3个长方体,发现长方体的体积=长×宽×高,那所有长方体的体积都等于长乘宽乘高吗?(师在黑板上写个“?”)现在我们就来验证一下。这次验证有两个要求:一、尽量用多的学具拼摆,二、把你们的发现用算式表示并填在记录表2中。

  学生小组合作拼摆并进行记录,自由汇报拼摆结果。

  生1:我们组摆了两个长方体,第一个长方体长6厘米,宽3厘米,高4厘米,体积是72立方厘米,用算式表示是6×3×4=72……我们组的结论是长方体的体积等于长×宽×高。

  生2:我们组也摆了两个长方体,第一个长方体长……我们组的结论是长方体的体积=长×宽×高。

  师:其他组你们的结论和他们一样吗?(一样)有了这么多例子,现在这个问号可以擦下去了吗?(可以)

  (生齐读结论:长方体的体积=长×宽×高)

  同桌互说,男女说,齐说。

  师:如果用字母V表示体积,用a、b、h分别表示长方体的长、宽、高,那么长方体的体积公式还可以写成…(指说)

  生:V=abh (开火车说)

  5、小结

  刚才,同学们通过观察、思考、验证得出了长方体的体积公式,真了不起。让我们把这一结论再次大声的读出来……

  生:长方体的体积=长×宽×高 V=abh

  三、当堂训练

  1、填空

  2、 一个长方体,长7cm,宽4cm,高3cm,它的体积是多少?

  3、计算并比较两个礼品盒的体积。

  4、计算下面立体图形的体积。(单位:分米)

  (指生板演,汇报算法,在汇报过程中直接推导出正方体体积的计算公式及字母表示法)。

  5、一块正方体石料,棱长是6dm,这块石料的体积是多少立方分米?

  6、挖一个长和宽都是5米的长方体菜窖,要使菜窖的窖是50立方米,应挖多少米深?

  7、一个正方体魔方的棱长总和是36厘米,它的体积是多少立方厘米?

  8、计算组合图像的面积。

  四、课堂总结

  这节课你有什么收获?学生自由发言。

  五、课外延伸

  我国古代的数学家撰写了一本传世名著《九章算术》,其中对于有两个面是正方形的长方体,书中是这样叙述的:方自乘,以高乘之即积尺。就是说先用正方形的边长乘边长得底面积,再用底面积乘高得长方体的体积。看到这你想说些什么?

  生自由发言。

  六、随堂检测

  1、建筑工地要挖一个长50米,宽30米,深5米的长方体土坑,挖出多少立方米的土?

  2、一个棱长3厘米的正方体橡皮,它的体积是多少立方厘米?

  长方体的体积教学设计 2

  [教学目标]

  1、在具体的情境中自主探索并掌握长方体体积公式,能应用公式正确计算长方体体积,并解决一些简单的实际问题。

  2、通过操作、观察、猜想和归纳等数学活动,经历体积公式的探索过程,不断积累立体图形的学习经验,增强空间观念,发展数学思维。

  3、进一步体会数学与实际生活的联系,获得学习成功体验,激发数学学习兴趣。

  [教学准备]

  教师准备用1cm3小正方体拼摆成的长方体模型,长方体包装盒,多媒体课件;各小组准备1cm3的正方体和实验记录单。

  [教学过程]

  一、创设情境,导入新课

  谈话:上节课,我们已经认识了体积和体积单位。今天,老师带来了一个用1cm3的小正方体摆成的长方体(出示长4cm、宽3cm、高2cm的长方体模型),你有办法知道这个长方体的体积是多少立方厘米吗?

  明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。

  演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)

  揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)

  [设计意图:通过数一个长方体中含有的1cm3小正方体的个数,使学生进一步理解求一个物体的体积,就是求这个物体包含的体积单位的个数。同时也为后面有序地数出小正方体的个数作一些孕伏。]

  二、操作探究,发现规律

  启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?

  学生回忆后,电脑演示推导长方形面积公式的过程。

  出示长方体直观图,讨论:你认为,长方体的体积可能与它的什么有关?我们可以用怎样的方法研究长方体的体积?

  学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的正方体,长方体中含有体积单位的个数就是它的体积。

  谈话:同学们的想法有没有道理呢?我们来看大屏幕,(多媒体演示)我们来想象一下:如果一个长方体的长增加或缩短,它的体积会怎样?如果改变它的宽或者高,体积会发生怎样的变化?

  谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。

  明确活动要求:

  (1)同桌合作,用若干个1cm3的正方体任意摆出4个不同的长方体并编上序号。

  (2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。

  (3)填完表格后,同桌核对数据,并交流自己的发现。

  学生按要求操作、交流,教师巡视。

  组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)

  板书:长方体的体积=长×宽×高。

  启发:同学们通过用1cm3的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。

  [设计意图:引导学生由探索长方形面积的经验,通过类比把探索平面图形面积的方法迁移到立体图形中来,既有利于培养学生初步的推理能力,也是具体的学习方法的指导;用1cm3的小正方体摆长方体的操作,旨在引导学生通过操作和交流,初步发现长方体体积与它的长、宽、高的关系,并在这一过程中,培养动手操作能力,发展数学思考,感悟归纳的思想方法。]

  三、再次探索,验证规律

  出示4×1×1的长方体图,谈话:这是一个长4cm、宽1cm、高1cm的长方体,你知道它的体积是多少吗?

  学生可能想到用4个1cm3的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm3;也可能用“4×1×1”算出它的体积。

  根据学生的.回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm3。(见图1)

  出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm3的小正方体,你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先在长方体上画一画,再和同学交流。

  提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)

  明确:在这个长方体中,沿着长一排可以摆4个1cm3的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。

  出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先试一试。

  反馈:这个长方体的体积是多少cm3?你是怎样想的?(学生的回答后,出示图3)

  提问:如果用的小正方体来摆第3个长方体,沿着长一排可以摆几个?沿着宽可以摆几排?沿着高可以摆几层?它的体积可以怎样计算?

  再问:如果有一个长方体,长5cm,宽4cm,高3cm,摆出这个长方体一共要用多少个1cm3的正方体?它的体积是多少cm3?

  引导学生用示意图表示出思考过程。

  [设计意图:对三个长方体的探究,引导学生经历了“想象—画图—说理”的过程,使学生随着排数、层数的递增,清晰地体会到长方体的体积与它的长、宽、高的关系。第4个长方体只给出了长、宽、高的数据,意在促使让学生依托已经获得的直观经验,将摆的过程内化为有序地算(数)的过程。至止,长方体体积计算方法已呼之欲出。]

  四、引导概括,得出公式

  提问:通过刚才的活动,你认为长方体的体积与它的长、宽、高有什么关系?我们前面提出的猜想正确吗?

  揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。

  讲解:如果用V表示长方体的体积,a、b、h分别表示长方体的长、宽、高,你能用字母表示出长方体的体积公式吗?

  板书:V=abh。

  和同桌说一说你还知道了什么?

  让学生口算各题的得数,并交流计算时的思考过程。

  五、巩固练习,应用拓展

  1、完成“试一试”。

  出示长方体的包装盒,谈话:刚开始上课,我们还不能求这个包装盒的体积是多少,现在你能解决了吗?要求这个长方体包装盒的体积,需要知道哪些条件?有办法知道这些数据吗?

  指导测量、记录数据后独立解答。

  出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm3?

  学生独立完成后,组织反馈。

  2、完成第26页“练一练”第1题。

  先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm3的小正方体摆成的。

  3、完成练习六第2题。

  出示题目,让学生自由读题。

  提问:计算冷藏车的容积,为什么要从里面量?

  学生独立完成计算,并组织反馈。

  六、全课小结,梳理学法

  提问:今天,我们一起学习了什么?通过这节课的学习,你有哪些收获?回顾这堂课的学习过程,我们是怎样探索出长方体的体积公式的?

  七、课堂作业

  练习六第1题。

  长方体的体积教学设计 3

  教学内容:

  推导长正方体的体积计算方法

  教学目标:

  1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

  2、培养学生空间和空间想象能力。

  教学重点:

  长正方体体积公式的推导。

  教学难点:

  运用公式计算。

  教学设计:

  一、出示课题,学习目标

  理解长方体和正方体体积公式的推导,能运用公式进行计算。

  二、出示自学指导

  认真看课本观察:每排个数、排数、层数与体积有什么关系?如何计算长方体的体积?

  三、学生看书,自学

  四、效果检测

  如何计算长方体的体积?

  板书:长方体体积=长×宽×高

  字母公式:V=abh

  五、练习

  1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?

  根据长方体和正方体的`关系,你能想出正方体的体积怎样计算吗?

  正方体体积=棱长×棱长×棱长V=aaa=a3读作a的立方。

  2、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?

  请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?

  长方体体积=长×宽×高提问:长方体的长、宽、高不同,体积相同这是为什么?

  六、小结:

  怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。

  长方体的体积教学设计 4

  教学基本

  内容六年制小学数学第十一册P25—26。

  教学目的和要求

  1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

  2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

  3、培养学生初步的归纳推理、抽象概括的能力。

  教学重点

  及难点探索并掌握长方体和正方体体积的计算方法。

  长方体和正方体体积公式的推导。

  教学方法

  及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。

  学法指导

  讨论交流,并认真听讲思考。

  集体备课个性化修改

  预习阅读书本25、26页,并初步理解解

  教学环节设计

  一、以旧引新

  师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

  要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)

  二、探究新知

  1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。

  师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。

  师:将摆出的长方体放在桌上,并编号。

  请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。

  引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。

  问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?

  师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的.乘积呢?

  依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?

  师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?

  2、验证、交流后归纳出长方体的体积计算公式及字母公式。

  通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?

  通过交流得出公式:长方体的体积=长×宽×高。

  问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?

  交流得出:V=abh.

  3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。

  师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?

  交流得出:正方体的体积=棱长×棱长×棱长。

  重点理解的含义,进一步明确的读法、写法。

  做“试一试”。

  作业做“练一练”。

  做练习六第2题

  课堂作业:做练习六第1、2题

  板书设计

  执行情况与课后小结

  长方体的体积教学设计 5

  教学内容:

  人教版数学第十册第29页——30页的内容及相应的练习题。

  教学目的:

  1、通过实验探究长方体的体积计算公式,并能应用公式解决相应的实际问题。

  2、让学生经历长方体体积公式的推导过程,理解体积计算公式。

  3、培养学生动手拼摆能力,观察、归纳推理能力。

  教学重点:

  体积公式的推导过程、体积公式的应用。

  教学难点:

  体积公式的推导过程(每排个数、排数、层数和长方体长、宽、高之间的关系)。

  教学准备:

  学生分成2人小组,每组准备一些数量的小正方体、练习题单。

  教学过程:

  一、直接导入

  师:前面我们学习了常用的体积单位,今天我们来探究长方体的体积求法。

  板书:长方体的体积。

  二、猜测、为学生指名探究方向

  1、课件出示:一个长方体。师:你有什么方法能知道这个长方体的体积?

  2、课件演示:把长方体切割成一个个的小正方体,数出每排个数、排数和层数;并用每排个数×排数×层数=总个数(即体积数)。

  3、师:

  (1)数小正方体个数的方法能解决所有的长方体体积问题吗?看来有必要得出一个求长方体体积的计算公式。

  (2)猜测一下长方体的体积可能和长方体的什么有关?

  4、课件演示,让学生理解长方体的体积与长方体的长宽高都有关系。

  三、探究体积公式推导过程

  1、师:接下来我们就一起用小正方体通过拼摆,来探究一下长方体的体积和长宽高之间到底有什么关系。

  2、同桌合作:课件出示:合作要求:

  (1)齐读要求。

  (2)先摆,再观察,最后再填表。

  3、学生动手操作,教师巡视指导。

  4、全班交流:

  (1)小组汇报结果。

  (2)观察表格思考:你有什么发现?同桌先互说。

  (3)全班交流发现。

  (4)师补充提问:每排个数、排数、层数和长方体的什么有关系?它们之间有什么关系呢?

  结合学生的回答,观察一个摆好的长方体,理解每排个数、排数、层数和长宽高之间的对应关系。并多抽几个学生说说它们之间的关系。

  5、师:你能推导出长方体的体积计算公式了吗?学生回答,教师适时板书:长方体的.体积=长×宽×高;V=abh。

  6、回顾刚才的推导过程,同桌互说。

  7、及时练习:出示一个长方体的文具盒。

  师:要求这个长方体文具盒的体积要知道什么条件?教师给出长宽高,学生计算,强调书写格式。

  四、课堂练习

  1、口算填表(见题单)。

  2、小法官:

  (1)两个体积相等的长方体,它们的长宽高一定相等。()

  (2)一个长方体的长宽高都扩大到原来的2倍,它的体积就扩大到原来的2倍。()

  3、建筑工地要挖一个长50米,宽30米,深50厘米的长方体土坑,一共要挖出多少方的土?(在工程中,1m3的土、沙、石等均简称“1方”)

  4、考考你:下列长方体的体积各是多少立方厘米?(小正方体的棱长1厘米)(见题单)

  五、小结下课

  通过学习,你有什么收获?(方法和知识两个方面来说)板书:长方体的体积长方体所含体积单位的数量=每排个数×排数×层数;长方体的体积=长×宽×高;V=abh。

  课后反思:

  1、对推导过程的关键地方突出不够,即,每排个数、排数、层数与长方体的长宽高的关系理解说理不够,应该让学生多说,还可以通过课件演示一下。

  2、教师语言还不够准确、精炼,提出的数学问题还可以更加准确具有指向性,对于关键地方的引导还不够合理。

  3、应该板书出:1立方米=1方。加强学生对两个单位关系的理解。

  4、本节课对于时间的安排差不多,比以前的课堂要合理得多,基本上是按照预定的时间完成的,这是我本节课最满意的地方。

  长方体的体积教学设计 6

  教学目标

  1、巩固长方体,正方体体积的计算

  2、探索长方体、正方体体积与底面积和高之间的关系

  教学重点

  长方体、正方体体积计算

  教学难点

  底面积和高之间的关系

  教具准备

  长方体、正方体

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、复习导入

  1、出示长方体

  思考:如何计算它的体积?

  2、带入数字,计算长方体体积。

  长:2cm宽:3cm高:4cm

  二、引入新课

  1、出示正方体

  提问:如何计算正方体体积?

  2、根据学生反馈,教师极书公式:

  正方体体积=棱长×棱长×棱长

  V=a×a×a=a3

  3、试一试

  1出示三幅图。

  学生进行思考

  反馈:长×宽×高

  学生进行计算

  2×3×4=24cm3

  学生回顾长方体体的公式,联系长方体、正方体的关系,进行推理。

  正方体体积=棱长×棱长×棱长

  V=a×a×a=a3

  通过对长方体体积公式的回顾,引导学生联系长方体和正方体之间方之间的关系,引导学生自己进行推测,从而得出正方体体积的计算公式。

  培养学生推理能力和理解,分析问题的能力。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  2引导学生观察:

  图中阴影部分叫什么?

  它们与高之间有什么关系?

  3你还能提示三个图形的体积吗?

  4引导学生计逄三幅图的体积。

  三、练一练

  1、练一练1

  引导学生通过观察得出长方体的.长、宽、高成正方体的棱长,再利用公式计算。

  2、练一练2

  让学生应用公式进行计算独立完成。

  反馈计论结果。

  引导学生观察,找出阴影部分,并认识体面积。

  独立思考:它们与高之间的关系。

  得出:底面积×高=体积

  学生利用所推导出的公式,计算三幅图的体积。

  反馈。

  学生观察图

  计算

  教师指导详细教研组4.7

  学生在观察中体会底面积与高之间的关系,进一步理解记忆长方体、正方体体积的计算。

  长方体的体积教学设计 7

  教学目标:

  1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。

  2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

  3、培养学生动手操作、抽象概括、归纳推理的能力。 教学

  教学重点:

  使学生理解长方体的体积公式的推导过程,掌握长方体体积的计算方法。

  教学难点:

  理解长方体的体积公式的推导过程。

  课前准备:

  小正方体若干个 教法学法 合作法、讨论法

  教学过程:

  教学环节 第一次备课 动态修改

  一、复习导入

  1、字典是我们学习的工具书,必须要常备身边的,小明遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?

  2、小明在上学的路上,遇到两个物体,怎样才能比较大小呢?3、小明家买了饮水机和微波炉,谁的体积大呢?还能分割吗?怎么办?

  这节课我们就来学习长方体的体积的计算。 (小本的字典,体积小)

  (分割成若干个小正方体,再比较,求长方体的体积就是求长方体所含有多少个这样的体积单位。)

  二、概括公式

  1、学生猜想

  一个物体的大小和什么有关呢?

  (1)长、宽相等的时候,越高,体积越大。

  (2)长、高相等的时候,越宽,体积越大。

  (3)高、宽相等的时候,越长,体积越大。

  与长、宽、高都有关系。

  大胆猜测长方体的体积怎样计算

  学生猜想:长方体的体积=长×宽×高

  2、动手实践操作

  这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。

  课件出示记录表。(课本29页)

  (1)提出小组合作要求

  请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。

  (2)小组合作学习

  (3)小组派代表汇报

  生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。

  3、发现总结长方体体积公式

  (1)体积怎么求?我们一起来观察黑板上这几组数字。想一想,长、宽、高的.数字与体积的数字有什么关系?

  (2)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。

  板书:长方体的体积=长×宽×高

  (3)字母表示:长方体体积用V表示,长用a表示,宽用b表示,高用h 表示,长方体的体积公式用字母表示是V=a×b×h=abh

  板书:V=a×b×h= abh,学生齐读公式。

  4、迁移推导出正方体的体积计算公式

  现在请同学们根据长方体的体积计算公式,在小组内讨论讨论:正方体体积的计算公式是什么?学生小组讨论。

  教师追问:你们是怎么想的?

  学生:因为正方体是特殊的长方体,当长方体的长、宽、高都相等时,长宽高也就是正方体的棱长。所以正方体的体积=棱长×棱长×棱长。

  教师板书:正方体的体积=棱长×棱长×棱长

  教师说明用字母表示V=a×a×a = a3

  说明:a3读作a的立方或a的三次方,表示3个a相乘。

  学生齐读公式。

  5、教学底面积

  长方体和正方体的底面积怎么求呢?

  三、练习

  1、出示课本30页的例一:生独自完成,集体订正。

  2、课本31页做一做。

  四、课堂总结

  今天你有哪些收获?还有什么疑问?

  板书设计:

  长方体、正方体的体积

  长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长

  V=a×b×h= abh V=a×a×a = a3

  V=S×h= S h V=S×h =S h

  例1. V=abh V= a3

  =7×3×4 =6×6×6

  =84cm3 =216dm3

  长方体的体积教学设计 8

  教学目标

  (一)理解并掌握长方体和正方体体积的计算方法。

  (二)能运用长、正方体的体积计算解决一些简单的实际问题。

  (三)培养学生归纳推理,抽象概括的能力。

  教学重点和难点

  长方体和正方体体积的计算方法,以及其体积公式的推导。

  教学用具

  教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。

  学具:1厘米3的立方体20块。

  教学过程设计

  (一)复习准备

  1.提问:什么是体积?

  2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。

  教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)

  教师:如果再拼上一个1厘米3的正方体呢?

  教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

  (二)学习新课

  1.长方体的体积。

  (1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?

  教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

  同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的'同学回答,教师板书:

  教师:这些长方体有什么共同点?不同点?

  问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?

  (因为它们都含有同样多的体积单位——12个1厘米3。)

  教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

  学生讨论后,师生共同归纳:

  表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。

  同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。

  (2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。

  学生说出摆法和体积后。请看电脑动画图像:

  一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。

  教师板书:

  同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。

  学生操作,看电脑动画图像。教师板书:

  3(厘米) 3(厘米) 2(厘米) 18(厘米3)

  教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?

  学生口答后,老师用电脑图演示。然后板书:

  5(厘米) 4(厘米) 3(厘米) 60(厘米3)

  教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?

  学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。

  教师板书:长方体的体积=长×宽×高

  教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

  板书:V=abh。

  出示投影图:

  (3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。

  答:它的体积是84厘米3。

  练习:(投影出题,学生口答。)

  一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)

  2.正方体体积。(1)请学生看电脑动画录像:

  长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?

  问:这个正方体的体积可以求出来吗?

  学生口答,老师板书: 3×3×3=27(厘米3)。

  投影出一个正方体图。(可以用翻页变换它的棱长。)

  问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?

  学生口答,老师板书: 2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。

  用V表体积,a表示棱长,公式可写成:V=a·a·a或者V=a3。

  (2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  学生口答,老师板书:53=5×5×5=125(分米3)。

  答:体积是125分米3。

  做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。(3)说一说长方体和正方体的体积计算方法和字母公式。

  教师:请讨论长方体和正方体的体积计算方法相同还是不相同。

  学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

  (三)巩固反馈

  1.口答填空。课本P35练习七:2,3。

  2.口答填表:

  3.判断正误并说明理由。

  ①0.23= 0.2×0.2×0.2; ( )

  ②5x2=10x; ( )

  ③一个正方体棱长4分米,它的体积是:43=12(分米3); ( )

  ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。( )

  (四)课堂总结及课后作业

  1.长方体的体积计算方法及公式。

  正方体的体积计算方法及公式。

  2.作业:课本P35练习七:4,6。

  长方体的体积教学设计 9

  教学目标:

  1、 引导学生通过观察长方体的长、宽、高和正方体的棱长,再应用公式计算,解决生活中的'实际问题。

  2、 通过练习,提高学生解决问题的能力。

  教学重点:

  应用长方体体积公式计算长方体、正方体的体积。

  教学难点:

  正确理解体积

  教学过程:

  一、 复习引入

  1、复习上一节课学过的知识。

  提问:长方体、正方体的体积计算公式是什么?

  2、应用公式计算体积

  (1) 一个长方体,长8厘米,宽6厘米,高4厘米,求体积是多少?

  (2) 一个正方体,棱长是9厘米,体积是多少?

  二、 练习(教材43页练习题)

  1、 第5题 要求学生认真读题,注意最后的问题是需要多少升水?计算出来的体积单位是立方分米,要换算成升。

  2、 第6题 要求独立思考练习,与同伴交流,说一说你是怎么想的。

  3、 第7题 教师指导练习,结合书上的图想一想,再说一说,最后算一算。提示,正方体的每一条棱长都相等,先确定棱长。

  4、 第9题

  实践活动(见教材)

  三、 作业练习

  完成配套练习

  长方体的体积教学设计 10

  教学目标

  1.1知识与技能:

  使学生学会计算长方体和正方体的体积,并能利用公式正确进行计算。

  1.2过程与方法:

  在公式的推导过程中培养学生的观察能力、空间想象能力、提出问题的意识及解决实际问题的能力。

  1.3情感态度与价值观:

  使学生体会数学来源于生活,且服务于生活,产生热爱数学的思想感情。

  教学重难点

  2.1教学重点:

  2掌握长、正方体体积的计算方法,解决实际问题。

  2.2教学难点:

  长、正方体体积公式的推导过程

  教学工具

  教学课件、一个长方体拼制模型(长4厘米、宽3厘米、高2厘米)每组24个边长1立方厘米的小木块

  教学过程

  一、复习引入

  1、下列长方体的长、宽、高各是多少:

  长:8厘米长:6分米长:8厘米长:12米

  宽:4厘米宽:2.5分米宽:4厘米宽:10米

  高:5厘米高:10分米高:4厘米高:1.5米

  2、下列图形是用1立方厘米的正方体搭成的。它们的体积各是多少立方厘米?

  3、怎样知道这个长方体的体积是多少呢?

  今天我们就一起来学习长方体和正方体的体积。(板书:长方体和正方体的体积)

  二、新知探究

  1、长方体的体积。

  (1)活动一:

  师:郑老师在每个4人小组都放了12个1平方厘米的小正方体和一张学习单,下面我们将以四人小组的形式进行探究。首先请看活动要求(课件出示):

  A、四人小组合作用12个小正方体摆形状不同的长方体;

  B、每摆出一种请在学习单上做好记录,然后再摆下一种;

  C、摆完后想想你发现了什么,在四人小组内交流;

  D、每组选出一位代表进行汇报。

  生小组合作动手操作反馈,学生汇报,生每汇报出一种情况,师在黑板上的表格中板书:

  师:观察表格,你发现了什么?

  引导学生得出:只要用每行的个数乘以行数,得到一层所含的体积单位数,再乘以层数,就能得到这个长方体所含的体积单位数。

  板书:体积=每行个数×行数×层数

  师:刚才同学们用12个小正方体摆出的长方体体积都是12平方厘米的,郑老师刚才也摆了两个,不过体积比你们大多了,但是要看懂郑老师的长方体必须发挥一下你们的空间想象能力。(课件出示)

  你知道这两个长方体的体积吗?你是怎么知道的?(生说,师填表)

  (2)活动二:

  师:四人小组合作,你们能摆出一个体积更大的长方体吗?

  预设:长5厘米,宽5厘米,高4厘米。

  师:你发现了什么?每排个数、排数、层数相当于长方体的什么?

  生:长宽高,因为每一个小正方体的棱长是1厘米,所以,每行摆几个小正方体,长正好是几厘米;摆几行,宽正好是几厘米;摆几层,高也正好是几厘米。

  2、下面的长方体,看它包含有多少个体积单位?并指出它的长、宽、高各是多少。

  (2)观察上面个部分之间的关系,可以得出:

  第一个:5=5×1×1

  第二个:15=5×3×1

  第三个:12=3×2×2

  通过上面的关系式,可以得出:长方体的体积=长×宽×高

  如果用字母V表示长方体的体积,用a、b、c分别表示长方体的长、宽、高,那么长方体的体积计算公式可以写成:V=a×b×c。

  根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

  3、正方体的体积。

  因为正方体的性质,所有的棱长都相等,所以,正方体的体积=棱长×棱长×棱长

  如果用字母V表示正方体的体积,用a表示正方体的棱长,那么正方体的体积计算公式可以写成:V=a·a·a。

  a·a·a也可以写作a ?,读作“a的立方”,表示3个a相乘。

  正方体的体积计算公式一般写成V=a3。

  三、巩固提升

  1、计算下面图形的体积。

  V=abh=7×3×3=63(cm?)

  V=a3=4×4×4=64(cm)

  2、求下列长方体的体积。

  8×4×5=160(cm3) 6×2.5×10=15(dm3) 8×4×4=128 (cm3) 1.5×10×12=180(m3)

  3、雄伟的.人民英雄纪念碑矗立在天安门广场上,石碑的高是14.7米,宽是2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?

  解:V=abh

  =2.9×1×14.7

  =42.63(m?)

  答:这块石碑的体积是42.63立方米。

  4、判断正误并说明理由。

  (1)0.23=0.2×0.2×0.2。( √ )

  (2)5X3=10X。( × )

  (3)一个正方体棱长4分米,它的体积是:43=12(立方分米)。( × )

  ( 4 )一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。( × )

  5、一个长方体的体积是48立方分米,长8分米、宽4分米,它的高是多少分米?

  48÷8÷4=1.5(分米)

  答:它的高是1.5分米。

  6、一个长方体的棱长总和是96厘米。它的长10厘米,宽8厘米,它的体积是多少立方厘米?

  96÷4=24(厘米) 24-10-8=6(厘米)

  10×8×6=480(立方厘米)

  答:它的体积是480立方厘米。

  7、一个无盖的长方体鱼缸,长8分米,宽6分米,高7分米,制作这个鱼缸共需玻璃多少平方分米?这个鱼缸的体积是多少?

  (8×6)+(8×7+6×7)×2=244(平方分米)

  8×6×7=336(立方分米)

  答:制作这个鱼缸共需玻璃244平方分米。这个鱼缸的体积是336立方分米。

  课后小结

  这节课我们学习了什么?

  我们学习了长方体和正方体体积的计算公式。

  长方体的体积=长×宽×高,V=a×b×h

  正方体的体积=棱长×棱长×棱长,V=a×a×a=a3

  板书

  长方体和正方体的体积

  长方体的体积=长×宽×高

  V=a×b×h

  正方体的体积=棱长×棱长×棱长

  V=a×a×a=a3

  长方体的体积教学设计 11

  教学目标

  1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。

  2、能根据有关体积、容积的计算方法,解答实际问题。

  教学重点、难点

  重难点:

  能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。

  教学过程

  一、体积、容积单位之间的化聚、转换练习。

  458立方厘米=()立方分米

  20.6立方分米=()立方米

  7060毫升=()升=()立方分米

  130毫升=()立方厘米=()立方分米

  800升=()立方分米=()立方米

  0.02立方米=()立方分米=()升

  二、解决实际问题的应用练习。

  1、一个长方体的.汽油桶,底面积是18平方分米,高是5分米。如果1升汽油重0.74千克,这个油桶可以装汽油多少千克?

  2、一节货车车厢,从里面量长13米,宽2.7米,装的煤高1.2米。如果每立方米煤重1.3吨,这节车厢里装了多少吨煤?(得数保留整数)

  3、在一只底面是边长60厘米的正方形,高是80厘米的长方体纸箱内,装棱长是2分米的立方体纸盒。这只纸箱最多可装这样的纸盒多少个?

  4、一个长方体蓄水池,长9.6米,宽4.2米,深2.5米。这个蓄水池占地多少平方米?它最多可蓄水多少立方米?

  5、一个长方体水箱,从里面量长80厘米,宽40厘米,高60厘米,箱内水面离箱口10厘米。箱内共有水多少升?如果把这些水倒入另一个底面边长40厘米的长方体水箱内,这时水高多少厘米?

  (1)学生独立完成

  (2)说说解题思路

  第一题:18×5=90(立方分米)90(立方分米)=90升

  90×0.74=66.6(千克)

  第二题:13×2.7×1.2=42.12(立方米)

  42.12×1.3≈55(吨)

  第三题:60×60×80=288000(立方厘米)

  2分米=20厘米

  20×20×20=8000(立方厘米)288000÷8000=36(个)

  第四题:9.6×4.2=40.32(平方米)

  9.6×4.2×2.5=100.8(立方米)

  第五题:80×40×(60-10)=160000(立方厘米)

  160000(立方厘米)=160升

  160000÷(40×40)=100(厘米)

  (3)重点分析第5题

  水面离箱口10厘米,说明水的高度是50厘米。从而求出水的容量。再根据底面边长40厘米的长方体水箱,求得水的高度。

  三、思考题

  用一张长50厘米,宽40厘米的长方形铁皮,做一个深10厘米的无盖长方体铁皮盒。要使这个长芳褪铁皮盒的容积最大,可以怎样做?

  1、学生独立研究

  2、小组讨论

  3、教师评议

  长方体的体积教学设计 12

  教学目标:

  1、在摆长方体、数据整理、观察讨论等活动中,经历探索长方体体积公式的过程。

  2、掌握长方体的体积计算公式,知道公式的字母表达式,会计算长方体的体积。

  3、在探索长方体体积公式的活动中,感受数学问题的探索性和数学结论的确定性。

  教学重难点:

  掌握长方体的体积计算公式,知道公式的字母表达式,会计算长方体的体积。

  教学过程:

  一、复习旧知,呈现课题

  1、体积是指什么?常用的体积单位有哪些?什么是1立方厘米,1立方分米,1立方米?

  2、体积是4立方厘米的正方体里含有多少个体积是1立方厘米的小正方体?那么,体积是8立方厘米、10立方厘米呢?这说明了什么?(生:体积是多少就含有多少个体积单位。)

  (师出示一长方体教具)

  师:你能猜出这个长方体的体积是多少吗?

  生:长方体的体积=长×宽×高

  师:你怎么知道的?

  生:我以前问过我爸爸。

  师:你真是一个勤学上进的孩子!

  师:你们对他的回答有什么问题想问吗?

  生:为什么长方体的体积=长×宽×高。

  二、观察操作,实验探究长方体体积的计算方法

  1、探索活动:

  小组合作(每四人一组做实验并记录):用40个体积是1立方厘米的小正方体摆出不同的长方体。

  活动前师友情提示:

  (1)每个小组用40个体积是1立方厘米的小正方体摆出4个不同的长方体;

  (2)注意观察你所摆的长方体有几层?每层有几行?每行有几块小正方体?你所摆的长方体的长、宽、高分别是多少?

  (3)我的发现是……

  2、成果展示:

  (请小组代表到台前利用实物投影展示拼摆的过程并汇报方法及结果。)

  (1)体积与每排个数、排数、层数的关系。

  (板书:长方体体积=每排个数×排数×层数)

  每排个数、排数、层数与长方体的长、宽、高的关系。(每排个数相当于长;排数相当于宽;层数相当于高)

  (板书: 长 宽 高)

  (2)长方体所含体积单位的个数与它的长、宽、高的.关系。

  (长方体体积等于长方体所含体积单位的个数,所含体积单位的个数正好等于长方体长、宽、高的乘积)

  长方体体积公式 长方体体积=长×宽×高

  (3)如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高体积的字母公式怎样写?V=a×b×h V=abh(板书)

  (4)说一说:长方体的体积与什么有关?(长、宽、高)

  3、运用长方体体积公式解决问题

  4、小结:刚才我们通过实验推导出了长方体体积公式,这就是我们这节课学习的主要内容。

  三、巩固发展

  计算出数学课本的体积。(学生两人一组完成该项任务)

  四、小结

  板书设计:

  长方体的体积=长×宽×高

  V=abh

  长方体的体积教学设计 13

  教学目标:

  1、使学生理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。

  2、使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。

  教学重点:

  1、建立体积概念。

  2、认识体积单位。

  教学难点:

  建立体积概念。

  教学用具:

  学具袋。

  教学过程:

  一、导入:你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?这其中有什么道理?

  二、新授:

  1、体积的意义。

  (1)、准备:我们也来做一个实验,取两个同样大小的玻璃杯。先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?这说明了什么?(鹅卵石占了一定的空间。)

  (2)、每一个物体都占有一定的空间。下面的电视机、影碟机和手机,哪个所占的空间大?

  〔3〕、启发学生概括:物体所占空间的大小叫做物体的体积。(板书)

  上面三个物体,哪个体积最大?哪个体积最小?

  (4)、比较:用学生手中的文具比。谁的体积大?谁的体积小?

  师:教室是一个较大的空间,课桌、讲台、同学、老师等占教室空间的一部分。整个学校是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自己的体积。而整个宇宙是一个大空间,地球只是宇宙空间的一部分,而地球上的山、川、河流、一切建筑物、人等占地球的一部分。

  2、体积单位:

  (1)、讲:测量长度要用长度单位,测量面积要用面积单位,测量体积要用体积单位。(板书)

  认识体积单位:

  常用的体积单位有:立方米、立方分米、立方厘米。可以分别写成

  ( 2)、认识立方厘米:

  出示:棱长是1厘米的正方体,量一量它的棱长是多少?

  说明:它的体积是1立方厘米。

  谁的体积近似的接近1立方厘米?(色子或一个手指尖的体积大约是1立方厘米)

  (3)、认识立方分米: (方法同立方厘米)

  粉笔盒的体积接近于1立方分米。

  (4)、认识立方米:

  ①出示1立方米的棱长的教具。观察后总结:边长是1米的正方体的体积是1立方米。

  ②认识1立方米的空间大小。

  1立方米水约可以装满500个暖瓶。1立方米的木材约可以做课桌50张。

  小结:

  常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?

  体积单位的用途是什么?

  (5)、练一练:选择恰当的单位:

  橡皮的体积用( ),火车的体积用( ),书包的体积用( )。

  (6)、比一比:

  到现在为止,我们都了学哪些测量单位?(板书)

  长度、面积、体积三种单位的区别:

  (7)、练习:

  ①说一说:测量篮球场的大小用( )单位。

  测量学校旗杆的高度用( )单位

  测量一只木箱的体积要用( )单位。

  ②、 一个正方体的'棱长是1( ),表面积是( ),体积是( )。(你想怎样填?)

  ③、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。()

  3、体积初步认识:

  ①决定体积大小,是看它含有体积单位的个数。

  A 、演示:用棱长1厘米的4个正方体,拼一个长方体,说出它的体积是多少?

  B、说出下面物体的体积(3个体积单位,4个体积单位,)

  C 、摆一摆:请你也摆出一个体积是3立方厘米的物体。摆出体积是4立方厘米的物体。

  D、小结:怎样知道一个长方体的体积是多少?

  同一个体积数,可以摆出不同的形状。

  ②动手摆一摆:

  请大家用手中的小正方体拼一个体积是8 立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?

  三、总结:

  这节课我们学习了体积的意义和体积单位。你有什么收获?

  四、作业:

  课后小结:

  长方体的体积教学设计 14

  教学目标:

  1.理解并掌握长方体和正方体体积的计算方法;

  2.能运用长、正方体的体积计算解决一些简单的实际问题;

  3.培养学生归纳推理,抽象概括的能力。

  教学重点:

  长方体和正方体体积的计算方法。

  教学难点:

  长方体和正方体体积公式的推导。

  教学用具:

  教具:1立方厘米的立方体24块,1立方分米的立方体1块。

  学具:1立方厘米的立方体20块。

  教学过程:

  一、复习准备

  1.提问:什么是体积?

  2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排。

  教师提问:拼成了一个什么形体?(长方体) 这个长方体的体积是多少?(4立方厘米) 你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成) 如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

  谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们 来学习怎样计算长方体和正方体的体积。

  板书课题:长方体和正方体的体积

  二、学习新课

  (一)长方体的体积【演示动画长方体体积1】

  1.拼摆长方体:

  请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆 出的长方体的'长、宽、高.

  2.学生汇报,教师板书:

  教师提问:这些长方体有什么共同点?(体积相等) 不同点?(数据不同) 为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位 12个1立方厘米) 教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

  师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1 立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。

  3.【演示动画 长方体体积2】

  第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。 一排摆出4个1立方厘米的正方体一共摆了三排摆两层

  第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。 一排摆出3个1立方厘米的正方体一共摆了3排摆2层

  第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积。 一排摆出5个1立方厘米的正方体一共摆了4排摆2层

  思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长 方体的体积有没有关系?是什么关系? (长方体的体积正好等于它的长、宽、高的乘积)

  教师板书:长方体的体积=长宽高

  教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

  板书: V=abh 出示投影图:

  4.自学例1。

  一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

  743=84(立方厘米)

  答:它的体积是84立方厘米。

  (二)正方体体积。

  1.【演示课件正方体体积】 教师提问:此时的长,宽,高各是多少? 变成了什么图形? 这个正方体的体积可以求出来吗?

  2.练习 棱长为2分米,它的体积是多少平方分米?222=8(立方分米) 棱长为4厘米,它的体积是多少平方厘米?444=64(立方厘米)

  3.归纳正方体体积公式。

  教师板书:正方体体积=棱长棱长棱长。

  用V表体积,a表示棱长 V=aaa或者V=a3

  4.独立解答例2。

  光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米? (分米3 )

  答:体积是125立方分米。

  (三)讨论长方体和正方体的体积计算方法是否相同。

  学生归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中 b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长宽高。

  三、巩固反馈

  判断正误并说明理由。

  一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。( )

  四、课堂总结

  今天这节课我们学习了新知识?谁来说一说?

  长方体的体积教学设计 15

  教学目标

  1、结合具体情况和实践活动,操索并掌握长方体,正方体体积计算方法,能正确计算长方体,正方体的体积;

  2、在观察、操作、操索的过程中,提高动手操作能力,进一步发展空间观念。

  教学重点

  掌握长方体,正方体体积的计算方法。

  教学难点

  正确计算长方体,正方体的体积。

  教具准备

  长方体,正方体模型。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、导入:

  1、出示长方体

  提问:长方形的面积和长和宽有关,长方体的体积可能与什么有关?

  二、做一做

  1、用相同的小正方体摆出4个不同的长方体,记录它们的长、宽、高并完成下表()

  引发学生进行思考,

  学生通过观察、分析,发现长方体体积与长、宽高的关系。

  2、学生进行思考。

  ○1学生体会“长、宽相高的时候,越高体积会怎样?”

  ○2体会“长、高相等时候,越宽,体积会怎样?”

  ○3体会“宽、高相等的'时候,越长,体积会有什么变化?”

  通过实物,引出深题,激发学生操索的兴趣。提出问题引发学生的思考。

  让学生通过几次活动,比较,感知长方体二体积与它的长、宽、高有关系,为进一步自己操索长方体体积的计算,打下良好的基础。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  2、说一说:

  学生反馈自己的数据,教师带学生逐一对数据进行分析

  三、说一说

  1、引导学生分板数据

  2、得出长方体体积公式

  长方体的体积=长×宽×高

  V=a×b×h

  四、算一算

  1、测量自己的铅笔盒,找出长、宽、高

  2、计算铅盒的体积

  引导学生观察数据,观察长方体的体积,与它的长、宽、高有什么关系?

  3、集体进行反馈,说一说

  自己的计算方法。

  通过让学生对记下的有关数据,通过观察,分析,发现长方体体积与长、宽、高的关系,归纳得出长方体体积的计算方法。

  板书设计:

  长方体体积

  长方体体积=长×宽×高

  V=a·b·h

  底面积×高

  正方体体积=棱长×棱长×棱长

  V=s·h

  长方体的体积教学设计 16

  教学目标:

  1、密切联系生活实际,感受体积、容积单位的实际意义

  2、在比较活动中,体会并理解体积和容积的意义。

  3、在观察、操作中,探索长方体体积的计算方法。

  教学过程

  一、复习准备。

  1、观察后回答:

  ①我们已经学过这些图形,你能说出它们的名称吗?

  ②根据学生的回答有意归类并板书。

  ③指着左边问:这些都是什么图形?(板书:平面图形)

  ④指着右边问:这又都是什么图形?(板书:立体图形)

  2、出示第13页图中的各个实物,并指导学生将自己从家中带来的各个长方体和其它物体摆一起,小组仔细观察后回答下面的问题:

  ①这些物体的形状都是什么图形?(这些物体的形状都是立体图形)

  ②这些立体图形的特点是都占有一定的什么?

  (空间,占有一定空间的图形叫做立体图形。)

  ③你知道这里面有哪些物体的形状是长方体?(肥皂、牙膏盒、墨水盒)

  ④你还见到过哪些物体的形状是长方体?(让学生说)

  二、揭示课题。

  从今天开始,我们的数学课主要研究长方体和正方体,这节课我们首先学习长方体的认识,并板书课题。

  三、教学新课。

  (一)出示第13页图中的各个实物,观察它们的特征。

  1、认识长方体的面。

  ①用手摸一摸它有几个面?(注意培养学生有顺序地观察)

  ②每个面是什么形状?(注意出示也有两个相对的面是正方形)

  ③哪些面完全相等?(演示给学生看)

  归纳:长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同。

  2、认识长方体的棱。

  在长方体上两个面相交的边叫做棱。

  ①数:长方体有多少条棱?(要说出数的方法)

  ②量:动手量一量每条棱的长度,看哪些棱的长度相等?(有什么规律?)

  归纳:长方体有12条棱,相对的4条棱的长度相等。

  3、认识长方体的顶点。

  三条棱相交的点叫做顶点。

  长方体有几个顶点?(8个)

  4、拿一个长方体放在讲台上让学生观察。

  最多能看到几个面?(3个面)

  讲解:所以我们通常把长方体画成这样。

  5、你们还能找出长方体的其它特征吗?小组讨论,用填空的'形式小结长方体的特征。

  长方体是由_____个长方形(特殊情况有两个相对的面是_____形)围成的____图形。在一个长方体中,相对的两个面_____,相对的棱的长度______。

  (二)教学长方体的长、宽、高。

  出示长方体框架

  提问:

  1、它的12条棱可以分为几组?怎样分?

  12条棱可以分为3组,把长度相等的棱分为一组。

  2、相交于同一个顶点的三条棱长度相等吗?

  想一想:

  1、你知道相交于一个顶点的三条棱的长度分别叫做长方体的什么吗?(长、宽、高)

  2、长方体的长、宽、高的长短与这个长方体有没有关系?

  结论:长方体的大小和形状是由它的长、宽、高决定的。

  四、巩固练习。

  1、让学生拿出准备好的长方体展开图,按要求做一个长方体,然后让学生说出自己度量的结果,并指出它的长、宽、高。(注意不同放置法的长、宽、高)

  2、看图说出每个长方体的长、宽、高是多少?

  五、课堂小结。

  今天我们学习了哪些知识?你还有什么问题吗?

  六、课后作业。

  自己设计一个长方体模型,量一量长、宽、高,然后与同学交流

  长方体的体积教学设计 17

  教学目标

  知识目标:

  探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体体积。

  能力目标:

  在观察、操作、探索的过程中,提高动手操作的能力,进一步发展空间观念。

  情感目标:

  学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点

  在观察、操作、探索的过程中,找出长方体的计算方法。

  教学难点

  在观察、操作、探索的过程中,找出长方体的计算方法。

  教学准备

  教具:长方体模型多个、直尺等。

  学具:长方体模型、直尺等。

  教学过程

  一、引入新课

  1、同学们猜想一下“长方形的面积与长和宽有关,长方体的体积可能与什么有关?

  二、探索新知

  (1)长、宽相等的时候,越高,体积越大。

  (2)长、高相等的时候,越宽,体积越大。

  (3)高、宽相等的时候,越长,体积越大。

  与长、宽、高都有关系。

  三、探究发现

  先算一算下列图形的体积,再读一读,想一想。(单位:dm)

  阴影部分的面积是上面各个图形底面的'面积,称为底面积。

  长方体(正方体)的体积=底面积×高

  V﹦S×h

  ﹦sh

  三、小结

  我们通过合作探究,动手操作和验证的方法推导出了长方体的体积计算公式,请大家闭上眼睛回忆一下推导的过程。

  四、巩固练习

  1、选择正确答案的序号

  (1)一个正方体的棱长是2米,体积是()立方米。

  ① 4 ② 6 ③ 8

  (2)体积相等的两个长方体,它们长、宽、高的长度()

  ①一定相等②一定不相等③不一定相等

  2、课本第43页”练一练“第1、2、题。

  3、解决实际问题

  1。一根长方体木料,长5m,横截面的面积是0.06m2。这根木料的体积是多少?

  一只青蛙(2)只眼,一只青蛙(4)条腿。

  请问:这只青蛙的体积有多大?

  2×1×(1.3—1.1)=0.4(立方分米)

  五、课堂小结

  学习了这节课,同学们有什么感受和体会?

  板书设计

  长方体(正方体)的体积=底面积×高

  V﹦S × h

  ﹦sh

  作业设计

  1、教材第43页”练一练“的第4、5、6、7、8题。

  2、长方体的长为6分米,宽为5分米,高为20分米,求这个长方体的表面积和体积。

  长方体的体积教学设计 18

  教学目标

  1、引导学生通过观察得出长方体的长、宽、高成正方体的棱长,再应用公式计算。

  2、通过操作活动,发展学生的空间观念,提高学生的自学应用意识。

  教学重点

  应用体积计算公式计算长方体、正方体的体积。

  教学难点

  体积

  教具准备

  正方体、长方体。

  学生学习活动过程

  设计意图

  一、复习导入

  1、提问:

  长方体的体积公式、正方体的体积公式。

  2、应用公式计算:

  (1)一个长方体,长20厘米,宽12厘米,高5厘米。

  (2)一个正方体,棱长是6分米。

  (3)一个长方体,底面积60cm2,高7cm.

  (4)一个长方体,底面是边长为2分米的正方形,高5分米。

  二、操作练习

  1、我说你搭

  教师说,学生进行拼搭

  学生独立思考,个别回答

  学生利用所学公式,对所学内容进行巩固练习。

  学生独立完成,集体反馈

  1、用体积是1cm3的小正方体搭长方体。

  2、摆出体积是12cm3的长方体。

  3、一排5个,4排,3层体积,是多少?

  1、学生理解题意。

  2、分析题意。

  通过对计算体积公式的复习,引入课题。

  通过让学生计逄长方体、正方体的体,进一步巩固计算公式。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  引导学生进行拼搭,反愧展示。

  2、练一练

  (1)练一练4

  (2)练一练5

  a、指导学生用图示表示

  b、通过画图,

  c、在此基础上学生独立完成。

  (3)练一练8

  a、引导学生运用公式计算

  b、集体反馈

  a、分析题意,要先求出这个纸箱的体积和每个牙膏盒的体积,再用纸箱的体积除以每个牙膏盒的体积。

  b、学生独立计算

  c、集体反馈

  学生发现,由于长方体的高是3cm,所以正方体的`棱长为3cm。

  这一活动是发展学生空间观念及灵敏的及应能力。

  通过练习,使学生在灵活定用公式计算的同时,培养学生运用公式解决问题的能力。

  长方体的体积教学设计 19

  教学目的:

  通过观察和比较,使学生正确理解体积的意义,认识常用的体积单位立方米、立方分米、立方厘米,培养学生的空间观念。

  教具、学具准备:

  1、教师准备:

  ①盛有红色水的大玻璃杯一个,用绳子捆着的石头一块,沙土一堆;

  ②长方体、立方体积木各一块;

  ③体积是1立方分米、1立方厘米的正方体木块各12块;

  ④用木条制成的1立方米的棱架一个;

  ⑤投影仪。

  2、学生准备:12个1立方厘米的小正方体(如白色的奎逊耐木块)。

  教学过程:

  一、导入新课

  教师:我们已经认识了长方体和正方体,掌握了长方体和正方体表面积的计算方法。下面我们来学习长方体、正方体的体积和体积单位。(板书:体积和体积单位)

  二、新课

  1、教学体积概念。

  教师:我们已经知道什么叫周长,什么叫面积,那么什么叫体积呢?让我们先来做一个实验,大家要注意观察看谁观察得仔细,能发现新知识。

  教师拿出盛有半杯红色水的玻璃杯和用绳子捆着的石头一块,用手提绳子将石头浸人玻璃杯的水中。

  教师:注意观察放入石头后水面有什么变化。

  教师将石头提起,再放入水中一次。然后让学生说一说观察的结果。

  学生:放入石头,水面上升。

  教师:把石头放入水里后,水面为什么会上升呢?

  请几名学生回答后,教师指出:石头占有一定的空间,放入水里后,使得石头和水所占的空间变大了,所以水面就上升了。

  教师:我们再做一个实验,大家还要仔细观察,动脑筋思考。

  教师把玻璃杯里的水倒掉,装入满满一杯沙子。然后把沙子倒出,放入一块长方体积木,请一位同学来再将沙子装入玻璃杯,然后让学生说出实验的结果。

  学生:沙子多出来了。

  教师:大家想一想,为什么沙子会多出来呢?

  让几名学生说一说自己的想法。在学生发言的基础上教师概括。

  教师:因为这块积木占有一定的空间,积木放到杯子里就占据了杯子的一部分空间,所以沙土就装不下了。

  让学生理解了上述的话以后,教师再进一步讲解。

  教师:所有的物体都占有一定的空间,比如教室占据了一个较大的空间,课桌、讲台又占据了教室里的一部分空间;课本、文具盒占据了书包里的一部分空间;等等。

  教师用投影仪出示教科书第11页中间的图:一个墨水盒,一个电冰箱和一只水果盒。

  教师:观察这幅图,哪一个物体所占的空间大一些?哪一个物体所占的空间小一些?

  指名让学生回答后,教师指出:物体所占空间的大小叫做物体的体积。那么,这幅图里的三个物体,哪个物体的体积最大?哪个物体的体积最小?

  让学生回答后,教师进一步要求:你能说出身边的哪些物体的体积比较大,哪些物体的体积比较小吗?让几名学生说一说。

  然后教师总结:物体所占的空间越大,它的体积就越大。这两堆木块的每一块都是同样大的,因此哪一堆的木块多,哪一堆占的空间就大,体积也就大。因此我们说,物体所占空间的大小叫做物体的体积。

  2、教学体积的单位。

  教师:我们知道了什么叫做物体的体积,那么怎样计量体积呢?用什么计量单位呢?我们学习过计量长度要用长度单位,计量面积要用面积单位。谁能说一说常用的长度单位和面积单位各有哪些?

  指名让学生回答,教师把长度单位和面积单位分别板书在黑板的左侧,并分别标上“长度单位”、“面积单位”。

  教师:同样,计量体积时要用体积单位。常用的体积单位有:立方厘米、立方分米、立方米。

  教师一边叙述,一边把体积单位板书在黑板的右侧,与长度单位、面积单位对应处,并标上“体积单位”。

  教师:我们来看看这些体积单位的大小是怎样的。

  教师让学生每人拿出一个1立方厘米的小正方体,用直尺量出它的棱长是多少。教师也举起一个1立方厘米的正方体。

  教师:大家手里拿着的都是棱长1厘米的正方体,它的体积是1立方厘米。我们的手指头尖的体积大约是1立方厘米。

  教师要求学生用自己手指比试一下1立方厘米的实际大小。

  接着,教师出示棱长是1分米的正方体教具。

  教师:这是棱长是1分米的正方体,谁知道它的体积是多少?(1立方分米。)棱长是1分米的正方体,它的体积是1立方分米。粉笔盒的体积接近1立方分米。(用1立方分米教具与粉笔盒比较。)

  教师让学生用手势比试1立方分米的实际大小。(用两手空抱拳,取1分米高度,其体积大约是1立方分米。)

  教师拿出1立方米的棱架教具。

  教师:这是棱长1米的正方体,它的体积是多少?(1立方米。)对!棱长是1米的正方体,它的体积是1立方米。

  教师把棱架放到教室的一角,让学生看一看1立方米的体积有多大。

  教师:1立方米的空间大约可以容纳8名小学生。

  教师请8名学生钻进架子里,半蹲着,充满棱架。让全班同学体会1立方米的.实际大小。

  教师小结:常用的体积单位有立方厘米、立方分米和立方米。立方米是较大的体积单位,立方厘米是较小的体积单位。

  教师:我们知道了常用的体积单位。计量一个物体的体积,就要看这个物体含有多少个体积单位。

  教师用投影仪出示右图:

  教师:右图中的长方体是由4个1立方厘米的小正方体拼成的,它的体积是多少?

  指名让学生回答。

  教师用投影仪出示教科书第31页“做一做”第2题的图。

  教师:这两个图形都是用棱长1厘米的小正方体拼成的。谁能说出它们的体积各是多少?

  让学生分别说出每个图形的体积是多少。

  三、巩固练习

  做练一练的第5题。

  让学生拿出24个棱长是1厘米的小正方体,摆长方体。摆完以后,请几名摆的长方体形状不同的同学说一说,自己所摆出的长方体的长、宽、高各是多少。然后教师提问。

  教师:他们摆的长方体的长、宽、高一样吗?他们摆的长方体的体积是相同的吗?

  (启发学生发现大家所摆出的长方体的形状不同,长、宽、高也就不同,但是体积都是相同的。)

  教师再提问:这是为什么?(因为这些不同形状的长方体所含有的体积单位是一样的。)

  四、小结(略)

  长方体的体积教学设计 20

  教学目的:

  1、使学生理解和掌握长方体和正方体的体积的计算公式以及推导过程,并能运用这些公式进行计算。

  2、培养学生的观察能力、操作能力、推理能力,及运用知识解决实际问题的能力。

  3、培养学生勇于探索、善于钻研的学习品质,渗透理论来源于实践以及变与不变的辩证思想。

  教学重点:

  能正确运用体积公式计算长方体、正方体体积

  教学难点:

  能正确理解长方体、正方体体积的公式推导过程

  教学过程:

  一、设疑激趣、复习旧知

  1、出示问题:“小明要用橡皮泥捏一个长3cm宽2cm高1cm的长方体,但是它只有4立方厘米的橡皮泥,不知道用不用再去买一些?”

  解决这个问题关键要求什么?

  2、什么叫做物体的体积呢?常用的体积单位有哪些呢?”

  3、拿出1立方厘米、1立方分米模型各一个;请你分别指出哪个是1立方厘米,哪个是1立方分米?

  用手比划一下1立方米的大小?

  “看样子,在实际生活中,仅仅知道体积和体积单位是不够的.,很多时候都需要我们计算物体的体积。这节课我们便一起来研究长方体和正方体的体积。”

  (板书:长方体和正方体的体积)

  积的大小?”

  猜测一下哪些因素决定了长方体的体积大小?

  下面,就请你们亲自动手去验证一下体积和长、宽、高之间到底有什么关系?

  ①指导学生填写表头

  长方体体积大小的决定因素有哪些?将这些因素写在表头中。板书:长、宽、高

  这节课我们重点研究什么知识?板书:体积

  ②4个人为一小组,每组有12个小正方体,任选其中几个摆成一个长方体,将数据填在相应位置,比一比看哪组在规定时间内写出的数据最多?

  ③汇报数据:每组汇报一组数据

  (板书:学生汇报的数据)

  ④选择几组数据读一读,说一说你们读过这些数据后,有什么发现?

  板书:长×宽×高=体积

  ⑤用字母表示公式

  我们用V表示长方体的体积,用a、 b、h分别表示长方体的长、宽、高,那么长方体体积公式写成:V=abh(板书)

  提问强调:要求长方体的体积需要知道什么条件?

  ⑥利用公式、解决问题

  “现在你们可以帮助小明解决这个问题了”:

  “小明要用橡皮泥捏一个长3cm、宽2cm、高1cm的长方体,但是它只有4立方厘米的橡皮泥,不知道用不用再去买一些?”

  探究正方体的体积公式

  正方体体积=棱长×棱长×棱长

  用字母表示公式:

  强调V=a3读作a的立方

  表示3个a相乘。

  二、实践操作、探究体积公式

  实践探究长方体的体积公式

  左右手各拿一个大长方体和小长方体“请你们比较一下这它们体

  三、巩固练习

  1、一个一根长方体木料,长2.5米,宽0.3米,厚0.4米。它的体积是多少立方米?

  2、一个魔方的棱长是6厘米,它的体积和表面积相等吗?

  演示课件:突出6的不同,以及单位名称的不同

  四、质疑总结

  教师质疑:一个长方体的体积由什么决定?正方体呢?

  用彩色粉笔圈画出两个体积计算公式

  板书设计:

  长方体和正方体的体积

  长方体的体积教学设计 21

  教学内容

  教科书第51--52页的例1、例2,课堂活动及练习十二的1--3题。

  教学目标

  1.知识与技能:引导学生通过实验发现并探究出长方体和正方体体积的计算公式,理解长方体和正方体体积的计算方法。

  2.过程与方法:会运用公式正确计算长方体和正方体的体积。

  3.情感、态度与价值观:渗透"猜测--实验探究--验证"的学习方法,发挥学生的主体性,为今后学习其他立体图形体积的计算打下基础。

  教具学具

  学生准备12个体积是1cm3的小正方体木块。教师准备多媒体课件,及表格一和表格二。

  教学重点

  1.理解长方体和正方体的体积公式的推导过程。

  2.会计算长方体和正方体的体积。

  教学难点

  长方体、正方体的体积计算的推导过程。

  教学过程

  一、问题引入

  1.师:小朋友,你们喜欢搭积木游戏吗?这是老师用1cm3的正方体拼成的积木,(课件出示)你能说说它们的体积吗?

  师:你是怎样想的?

  教师:我们要计量一个物体的体积,就要看这个物体中含有多少个体积单位。

  2.师(出示一个长方体模型):要知道它的体积是多少,你有什么办法?

  生1:可以将这个长方体切成小的体积单位,看它包含着多少个这样的体积单位,就可以知道它的体积是多少。

  生2:将这个长方体浸没在水中,根据水面上升的刻度读出长方体的体积。

  生3:量出长方体的长、宽、高,用长×宽×高。

  教师:比较一下,哪种方法更适用呢?在生活中,有许多长方体是不能切开来数的。把什么物体都浸没在水中,看水面上升的刻度也比较麻烦。那么,生3的方法是否成立?这就是我们这节课要学习的内容。

  (板书课题:长方体和正方体的体积计算)

  [简评:从学生熟悉的搭积木游戏开始,沟通学生已有知识连接点:要计量一个物体的体积,就要看这个物体中含有多少个体积单位。然后让学生想办法怎样求出一个长方体的体积。激发了学生的求知欲,并自然过渡到新课的学习。]

  二、问题探索

  1.探索长方体的体积计算方法。

  (1)4人小组合作"搭积木"。电脑出示活动要求:用12个体积是1cm3的小正方体木块拼成不同形状的长方体,并填写表一:

  每排个数排数层数1cm3正方体的个数体积(cm3)

  长方体一

  长方体二

  长方体三

  思考:

  ①长方体每排个数、排数、层数分别相当于长方体的什么?

  ②长方体的体积怎样计算?

  (2)学生在合作交流中探讨长方体和正方体体积的计算规律。

  生:每排个数就是长方体长所含厘米数,排数就是宽所含厘米数,层数就是高所含的厘米数。长方体的体积=每排个数×排数×层数,或长方体的体积=长×宽×高,或长方体的体积=底面积×高。

  学生相互,鼓励学生自主探索。

  (3)用实例验证规律。

  师:刚才我们发现长方体的体积=长×宽×高,这个公式对所有的长方体都适用吗?

  学生从自己准备的学具中自由选取若干个1cm3的小正方体,搭成形状不同的两个长方体,验证每个长方体的体积是否等于它的'长、宽、高的乘积,请每小组(2人小组)同学一边实验一边填写表二:

  长(cm)宽(cm)高(cm)体积(cm3)

  第一个长方体

  第二个长方体

  让学生说说自己的发现。(板书:长方体的体积=长×宽×高)

  师:看来我们的发现是正确的,请给自己一颗探索星。

  (4)用字母公式表示长方体的体积计算方法。

  让学生观察板书和长方体的立体图,想一想:如果用V表示长方体的体积,a表示长,b表示宽,h表示高,用字母怎样表示长方体体积公式呢?

  (板书:V=a×b×h)

  师:闭上眼睛想一想,求一个长方体的体积必须具备什么条件?

  (5)反馈练习。

  师(课件出示例2):怎样计算电脑包装箱的体积?

  学生审题,独立完成。

  [简评:在探索长方体的体积的计算中,设置"操作→感知规律;验证→认识规律;练习→应用规律"几个层次,符合学生掌握知识的特点,使本环节的重难点得以突破。课堂气氛民主和谐,学生从同伴那里不断优化自己的思考方法。]

  2.自学正方体的体积计算方法

  (1)正方体的体积又怎样计算呢?猜猜看。

  (2)你的想法正确吗,可以翻开书第52页看一看,也可以同桌交流自己的看法。

  (3)说说正方体的体积计算方法,字母表示的方法(V=a·a·a或a3)。要计算正方体的体积,必须知道什么条件?

  (4)反馈练习:

  口答:这个正方体的体积是多少?

  三、课堂活动

  量一量、算一算。

  (分组测量、并计算)

  四、全课

  说说本课学习中你的收获。

  五、作业

  练习十二第2、3题。

  [简评:整堂课从学生提出假设,小组合作探索、交流得出长方体的体积计算公式,然后用长方体的体积计算公式推导正方体的体积计算方法,既体现了自主学习,又沟通了长方体和正方体体积的关系。解决实际问题的设计,让学生量一量,算一算,培养了学生动手实践和解决生活实际问题的能力。教师大胆地进行开放式教学,让学生经历探索的过程,让学生在合作中讨论交流,呈现了学生思维的多样性和层次性,发展了学生的思维,体现了教师主导与学生主体的教学观念。

  长方体的体积教学设计 22

  教学目标:

  1.在数学活动中探索并掌握长方体和正方体的体积公式,能运用公式正确计算它们的体积,并解决相应的简单实际问题。

  2.让学生在数学活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

  教学重点:

  探索并掌握长方体和正方体的体积公式。

  教学难点:

  长方体和正方体的体积公式。

  课前准备:

  学生每人准备30个左右的1立方厘米的小正方体。

  教学过程:

  一、创设问题情境,导入新课

  出示可分割的长方体模型,问:你能告诉大家它的体积是多少?

  说说是怎样想的。

  教师分割演示后设疑,并揭示课题。

  二、操作探究,发现规律

  1、出示例9,要求学生四人一组,用准备好的正方体搭出四个不同的长方体,并编号。

  2、让学生观察并交流。

  (1)这些长方体的长宽高各是多少?

  (2)用了几个小正方体,怎样很快知道所用的小正方体的个数?

  (3)长方体的体积是多少?

  3、在小组里根据拼搭的长方体的'数据填表。

  根据表格,引导分析,发现规律。

  拼搭出的长方体的体积跟小正方体的个数有什么关系?

  4、引导学生猜想:长方体的体积与它的长、宽、高有什么关系?

  三、再次探索,验证猜想

  1、出示例10,让学生摆出例10中的三个长方体,并提问:各需要多少个小正方体?

  2、让学生动手操作,先想一想,再数一数,看看一共用多少个正方体。

  3、课件演示。

  4、如果让你摆一个长5厘米、宽4厘米、高3厘米的长方体,你能说出要用多少个小正方体吗?

  四、引导概括,得出公式

  1、你发现长方体的体积与它的长、宽、高有什么关系?如何求长方体的体积。

  交流得出长方体的体积计算公式并板书文字公式和字母公式

  2、启发引导

  正方体是长方体的特殊形式,你能根据长方体的体积公式写出正方体的体积公式吗?

  让学生尝试,再交流得出,并阅读26的说明。

  五、应用拓展,巩固练习

  1、做“试一试”。

  学生独立计算,交流时先说说公式,再说说是怎样列式的。

  2、做“练一练”第1题。

  先观察,后独立计算。

  3、做“练一练”第2题。

  先让学生选择几个式子说说其表示的意思,再口算。

  4、做练习四第1题。

  学生独立解决后由学生逐一评讲。

  六、布置作业

  练习四第2、3题。

  七、课堂总结

  通过今天的学习,你有什么收获呢?

【长方体的体积教学设计】相关文章:

长方体的体积教学设计09-29

五年级下册长方体的体积教学设计10-09

小学生长方体和正方体体积应用题08-07

大体积混凝土的特点10-31

CAD长方体的画法10-07

大体积混凝土相关知识05-29

Word有效缩减文件体积07-31

大体积混凝土的简述定义07-31

Word文件体积减小技巧11-06