一次难忘的比赛作文300字经典
在日复一日的学习、工作或生活中,大家都经常接触到作文吧,写作文是培养人们的观察力、联想力、想象力、思考力和记忆力的重要手段。作文的注意事项有许多,你确定会写吗?以下是小编为大家整理的一次难忘的比赛作文300字经典,欢迎阅读,希望大家能够喜欢。

一次难忘的比赛作文300字经典1
教学内容:
青教版九年义务教育六年制小学数学六年级下册第23—28页。
教材简析:
该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。
教学目标:
1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。
2、经历探索圆柱计算公式的过程,进一步发展空间观念。
3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
教学重点和难点:
圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。
教具准备:
多媒体课件、圆柱体积学具、沙子等。
第一课时
教学过程:
一、创设情境,激趣引入。
谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)
课件出示:两个圆柱体冰淇淋。
谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?
(生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)
设计意图:
从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。
二、回忆旧知,实现迁移。
谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?
(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)
设计意图:
通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。
三、利用素材,探索新知。
㈠交流猜测
谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?
生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?
师谈话:你的想法很好,怎样转化呢?
生讨论,交流。
生汇报,可能会有以下几种想法:
1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。
2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。
3、如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。
谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。
㈡实验验证
学生动手进行实验。
谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。
学生合作操作,集体研究、讨论、记录。
设计意图本环节让学生亲自动手 操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。
四、分析关系,总结公式
1、全班交流
谈话:哪个小组愿意展示一下你们小组的研究结果?
引导学生发现:
转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。
2、分析关系
引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
3、总结公式。
谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。
(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)
谈话:你发现了什么?
引导观察:分的份数越多,拼成的.图形就越接近长方体。
(课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)
谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。
根据学生的回答教师板书:
长方体的体积 = 底面积 × 高
圆柱的体积 = 底面积 × 高
谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh
设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式。
五、利用公式,解决问题。
自主练习第1题、第2题、第3题
设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。
六、课堂总结
一次难忘的比赛作文300字经典2
教学目标
1.使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。
2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。
教学重点: 圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教学难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教 法:启发点拨,归纳总结,直观演示
学 法:自学归纳法,小组交流法
课前准备:课件
教学过程:
一、定向导学(5分)
(一)导学
1.什么叫体积?(指名回答)
生:物体所占空间的大小叫做体积。
师:你学过哪些体积的计算公式?(指名回答)
根据学生的回答,板书:
长方体体积=底面积×高
2.圆面积公式是怎样推导出来的?
生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式s=2πr。
3.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?
4、导入
我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。(板书:圆柱的体积)
(二)定向
出示学习目标:
1、理解和掌握圆柱的体积计算公式。
2、会用公式计算圆柱的体积,并能运用公式解答一些实际问题。
二、合作交流(15分)
1.阅读书25页。
2、看书回答:
(1)圆柱体是怎样变成近似长方体的?
(2)切拼成的长方体的体积、底面积和高分别与圆柱体的体积、底面积、高有什么关系?
(3)怎样计算切拼成的长方体体积?为什么 ?用字母怎样表示?
3、小组展评交流结果。
(1)展评题(1)。圆柱体是怎样变成长方体的?把圆柱体底面分成许多相等的`扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。)
(2)展评题2。
切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。
(3)展评题3
圆柱体积=底面积×高
v=sh
4、公式检测
学生独立完成书上做一做1、2题。
三、自主学习(5)
1、出示例6
下面这个杯子能不能装下这袋奶
直径8厘米 高10厘米 这袋奶498毫升
2、尝试列式计算.
3、学生展示自学结果。
4、小结
小结:要求圆柱体积,必须知道圆柱的底面积(如果给半径、直径、底面周长,先求出底面积)和高。注意统一单位名称。
四、质疑探究(2)
已知圆柱的底面周长和高又怎样求圆柱的体积?
五、
小结检测
(
13
分)
(一)小结
让学生说出圆柱体积的推导过程,体积公式。
(二)检测
1、把圆柱切开,可拼成一个( ),圆柱的体积等于近似长方体的( ),圆柱的底面积等于( ),圆柱的高等于( ),所以圆柱的体积=( )。
2.圆柱体的底面积3.14平方分米,高40厘米。它的体积是多少?
3.一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
4 判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。( )
(2)圆柱体的高越长,它的体积越大。( )
(3)圆柱体的体积与长方体的体积相等。( )
(4)圆柱体的底面直径和高可以相等。( )
5、 一张长方形的纸长6.28分米,宽4分米。用它分别围成两个圆柱体,它们的体积大小一样吗?请你计算一下。
板书设计:
圆柱的体积
圆柱体积=底面积×高
v=sh
75× 90=6750(立方厘米) 杯子的底面积:3.14×(8/2) ×(8/2) ×10=502.4(ml)
答:它的体积是6750立方米。答:这个杯子能装下这袋奶。
一次难忘的比赛作文300字经典3
【教学目标】
1、探索圆柱体积的计算方法,利用数学思想,体验数学研究的方法。
2、让学生掌握圆柱体积的计算方法,运用体积公式解决简单的实际问题。
3、通过把圆柱体转化成近似的长方体,提高学生解决问题的能力,感受获得成功的喜悦。
【教学重点】掌握和运用圆柱体积的计算公式。
【教学难点】圆柱体积公式的推导过程。
【教学方法】直观教学法,先用教具让学生观察比较,再让学生动手操作。在实践操作过程中理解掌握圆柱体积的计算方法。
【教学过程】
一、情景导入,复习旧知。
1、什么是圆柱的体积?
①出示情境图。修一面墙,用哪一种砖,所要的块数较少?为什么?
②什么叫做物体的体积?
③长方体的正方体的体积计算公式是什么:从公式中可以看出,要计算长方体和正方体的体积必须得到哪些明确的数据?
④推测:圆柱的体积可能与它的什么有关?
2、导入新课。
这节课我们就一起来探索圆柱体积的计算方法。板书课题:“圆柱的体积”
二、探索新知
1、比较大小,探究圆柱的体积与哪些因素有关。(让学生先试着说说)
(1)图1:比较等高不等底的三个圆柱的体积。(学生通过观察发现等高时底面积越大圆柱的体积也就越大)
(2)图2:比较等底不等高的五个圆柱的体积。(学生通过观察发现等底时高越大圆柱的体积也就越大。)
(3)圆柱的'体积计算公式可能是什么样的?V=Sh 2、大胆猜想,求证体积公式。
(1)引导学生回忆长方体、正方体的体积计算方法。
(2)设疑:圆柱的体积又该怎么样计算呢?根据以前学过的知识你可以做出怎样的假设?
(3)学生小组讨论交流。
(4)各小组参加全班交流汇报。(把圆柱底面分成许多相等的小扇形,把圆柱切开,就可以拼成一个近似的长方体,长方体的体积是底面积乘高,圆柱的体积也可能就是底面积乘高来计算的。)
3、演示转化过程,推导公式。
(1)老师操作转化过程。先分一个四或八等分的再分手上的这个十六等分的。
(2)学生带问题操作转化过程。
a:拼成的长方体的底面积等于圆柱的什么?
b:拼成的长方体的高又是圆柱的什么?(长方体的底面积等于圆柱体的底面积,高等于圆柱体的高。)
师生共同完成推导过程。
长方体的体积=底面积×高 圆柱的体积=底面积×高 v = s h 圆柱的体积计算公式就是:v=sh
(4)如果知道圆柱的底面半径r和高h,圆柱的体积公式又可以怎样来写呢?v=πr2h
(5)教材第25页“做一做”第1、2题。(第2题先让学生说说解题步骤,再齐练)
4、教学例6。
(1)出示例6。读题,说说从题中获得的信息。
(2)引导学生思考:解决这个问题就是要计算什么?
老师:求杯子的容积就是求这个杯子可容纳物体的体积,计算方法跟圆柱体积的计算方法相同。
(3)学生独立解决问题。
(4)组织交流反馈。
交流时,引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。
三、 巩固应用
1、完成教材第26页“做一做”第一题。
(1)要判断这杯水够不够喝,需要知道什么?你打算分哪几步计算?尝试完成。
(2)要求这个问题,需要先求什么?再求什么?独立完成。
2、完成教材第28页练习五第2题。
(1)尝试完成。
(2)说说解题思路。
3、完成教材第28页练习五第3题。
(1)尝试完成。
(2)说说解题思路。
四、课堂小节
今天这节课,我们一起探究了圆柱体积的计算方法。在探究的过程中,我们经历了猜测、实验、证明的思维过程。圆柱体积的计算方法和长方体、正方体相同,都可以用“底面积×高”来求。
五、课堂作业
教材练习五第4、5题。
板书设计:
圆柱的体积 长方体的体积=底面积×高 圆柱的体积 =底面积×高 V= s h 圆柱的体积计算公式是v=sh=πr2h
一次难忘的比赛作文300字经典4
学 科:数学
教学内容:最新人教版六年级数学下册第三章《圆柱的体积》
教材分析:
〈〈圆柱的体积〉〉是数学课程标准中“空间与图形”领域内容的一部分。〈〈圆柱的体积〉〉一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。由此、我制定以下三维教学目标:
教学目标
知识目标:
(1)通过学生体验圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。
(2)通过操作让学生知道知识间的相互转化。
能力目标:
倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念培养学生的逻辑推理能力。
情感目标:
让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:推导圆柱体积计算公式的过程。
教具、学具准备:
采用的教具为PPT课件和学具。(圆柱体切割组合学具,各小组自备所需演示的用具)。 教学过程:
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?
(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
(4)说一说长方体体积的计算公式。
2、出示橡皮泥捏成的圆柱体。
出示问题:大家想一想用什么办法来求出这个圆柱体橡皮泥的体积呢?
(有的学生会想到:老师将它捏成长方体就可以了;还有的'学生会想到捏成正方体也可以的!)
3、创设问题情景。
(课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?
刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)
(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。)
二、新课教学
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
(一)学生动手操作探究
1、回顾旧知,帮助迁移
(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系? 启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以……
(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。
(通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫)
2、小组合作,探究推导圆柱的体积计算公式。
(1)启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢? (这是学生会有圆的面积想到把圆柱转化为长方体)
老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。都说实践出真知,接下来同学们以小组为单位拿出学具,动手尝试着进行转化,并说一说转化的过程。
(2)学生以小组为单位操作体验。
老师引导学生探究:
① 说说你们小组是如何转化的。这是一个标准的长方体吗?为什么?
② 如果分割得份数越多,你有什么发现?(电脑演示转化过程)
③ 这是同学们刚才的转化过程。那书上是怎么说的?下面就请同学们打开书,自由读,用直线标记,找出关键句。全班齐读。
(3)现在再请一位同学到前面来演示转化过程。其他同学边观察边思考: ①切割后拼成了一个近似于什么的形体?
②圆柱的体积与拼成后的长方体的体积有什么关系?
③这个长方体的底面积等于圆柱的什么?
④长方体的高与圆柱体的高有什么关系?
(二)教师课件演示
1、课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决问题。 ①把圆柱拼成长方体后,形状变了,体积不变。
(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
(配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?
一次难忘的比赛作文300字经典5
一、创设情景、感知圆柱体积的概念。
教师拿出一个装了半杯水的烧杯,拿出一个圆柱形的物体,准备投入烧杯中。
师:同学们想一想会发生什么情况?(教师将圆柱形的物体投入水中。)请仔细观察后,说一说你有什么发现?
生:水面上升一些。圆柱形的物体挤掉了原来水占有的空间。
师:我们通常把这个空间叫体积。
生:我发现上升的水的体积和圆柱的体积是相等的。
师:同学们发现得都很精彩,谁来说一说什么叫圆柱的体积。
生:圆柱所占空间的大小就叫圆柱的体积。
二、比较大小、创设求圆柱体积的情景。
教师又拿出一个圆柱。(底面略小而高长一些,体积相差不多)
师:这两个圆柱的体积,哪个比较大一些?
生:第一个比较大,因为它高一些。
生:第二个比较大,因为它粗一些。
生:他们都是猜的。第一个圆柱它虽然高一些,但底面积小一些;第二个圆柱虽然底面大一些,它是的高少了一些。无法准确地比较它们的大小。
师:有什么办法能比较它们的大小呢?(小组讨论)
生:准备半杯水,将第一具圆柱浸没水中,作好标志,再把第二个圆柱浸没水中,作个标志,哪个水面上升的高一些,哪个圆柱的体积就比较大。
生:要学会计算圆柱的体积后就好解决了。
三、大胆猜想,感知圆柱体积公式。
师:你觉得圆柱体积的大小和什么有关?
生:和圆柱的高有关,一个圆柱它的高增加,它的体积也会变大些。
生:和圆柱的底面大小有关,一个圆柱它的底面增加,它的体积也会变大些。
师:很好!大胆地推想一下圆柱的体积应如何计算?(小组讨论)
生:我猜想用圆柱的底面积乘以它的高就可以求出体积。
师:你同意他的猜想吗?说说你的理由。
三、小心求证,论证圆柱体积公式。
师:同学们都很会大胆猜想,但还要小心地论证猜想的科学性。
教师拿出一具圆柱体体积教具,把它藏在衣服里,只露出一具底面。
师:你看到了什么?
生:圆形。
师:你还记得圆面积转化什么图形的面积来求它的公式的吗?
生:把圆的面积转化成长方形的面积。
教师把整个圆柱拿出来,问:怎么求这个圆柱的体积呢?(小组讨论)
生:可以把这个圆柱转化成我们已经会求的长方体的体积来求体积。
师:说说你们小组是如何转化的。
生上台操作展示。生:我们把圆柱平均分成16分,可以拼成一个近似的长方体,这个长方体的高就是圆柱的高,这个长方体的底面积和圆柱的底面积相等。所以,圆柱的体积可以用底面积乘高来求。
师:你同意吗?照这样做一遍,然后说一说如何求圆柱的体积。
最后学生自主得出圆柱的体积公式。
【片段分析】
本节课的设计过程是:"创设情景----发现问题----提出问题----猜想假设----实践操作----解决问题",这一教学过程,充分体现了以学生为主体的教学思想,教师充分地相信尊重学生,鼓励其积极主动地探究问题,让学生体验解决问题的过程,体验解决问题的成功。
1、注重了课程资源的开发。由于学生生活背景和思考角度的不同,所使用的方法必然是多样化的,教师应尊重每位学生个性化的想法,并认真倾听。本节课中多处合理地开发了学生的课程资源:一是在感知体积的概念时,教师通过做圆柱放入水的实验,实实在在地让学生用生活经验感知体积的存在;二是在猜想体积公式时,学生一般的经验是如果一个圆柱高(底面)不变,底面(高)越大体积越大,学生自然地就会利用自己的经验想到圆柱的'体积的大小与底面和高有密切的联系;三是在体积公式猜想时。猜想方法的多样化就体现了问题解决策略的多样化。有的学生联系实践生活联想,把圆柱看作是有很多个相等的圆叠加起来的;有的学生联系旧知识来推想,因为长文体和正方体的体积公式都是底面积乘高。学生是学生真正的主人,只有调动学生的学习积极性和平时的各种知识积累,这种知识的积累可以是以前学过的知识和方法,也可以生活中的经验或经历,这些都是课程资源,教师只有充分利用了这些课程资源,学生的学习活动才有可能真正成为有意义的过程。
2、注重数学思想方法和学习能力的培养。能力的发展决不等同于知识与技能的获得。能力的形成是一个缓慢的过程,有其自身的特点和规律,它不是学生“懂”了,也不是学生“会”了,而是学生自己“悟”出了道理、规律和思考方法等。本节课沿着“猜想-验证”的学习流程进行,给学生提供较充分的探索交流的空间,组织、引导学生“经历观察、实验、猜想、证明等数学活动过程”,并把数学推理能力有机地融合在这样的“过程”之中,有力地促使了学习改善学习方式。本课中学生“以旧推新”-大胆地进行数学的猜想;“以新转旧”-积极把新知识转化为已能解决的旧问题;“新旧交融”-合理地把新知识纳入到原有的认识结构中,教学活动成了学生自己建构数学知识的活动。
整个教学过程是在“猜想-验证”的过程中进行的,是让学生在和已有知识经验中体验和理解数学,学生学会了思考、学会了解决问题的策略,学出自信。
一次难忘的比赛作文300字经典6
【学习目标】
1、探索并掌握圆柱的体积计算公式。
2、能运用公式计算圆柱的体积,并解决实际问题。
【学习过程】
一、板书课题
师:同学们,今天我们来学习“圆柱的体积”(板书课题)。
二、出示目标
本节课我们的目标是:(出示)
1、探索并掌握圆柱的体积计算公式。
2、能运用公式计算圆柱的体积,并解决实际问题。
了达到目标,下面请大家认真地看书。
三、出示自学指导
认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:
1、圆柱的体积公式是如何推导出来的?
2、圆柱的体积计算公式是什么?用字母如何表示?
5分钟后,比谁能做对检测题!
师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。
四、先学
(一)看书
学生认真看书,教师巡视,督促人人都在认真地看书。
(二)检测(找两名学生板演,其余生写在练习本上)
第20页“做一做”和第21页第5题。
要求:1、认真观察,正确书写,每一步都要写出来。
2、写完的同学认真检查。
五、后教
(一)更正
师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)
(二)讨论
1、看第1题:认为算式列对的请举手?
【圆柱的体积=底面积×高】
2、看第2题:认为算式列对的举手?你是怎么思考的`?
3、看计算过程和结果,认为对的举手?
4、评正确率、板书,并让学生同桌对改。
今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)
六、补充练习:
1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?
2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积()。
3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是()厘米,体积是()立方厘米。.
下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。
七、当堂训练(课本练习三,第21页)
作业:第3、4、7、8题写作业本上
练习:第1题写书上,第2、6、9、10题写练习本上
八、板书设计
课题三:圆柱的体积
圆柱的体积=底面积×高
课后反思:
本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
一次难忘的比赛作文300字经典7
《圆柱的体积》是青岛版标准实验数学课本第十二册第二单元《圆柱和圆锥》中信息窗3的内容,它包括圆柱体的体积计算公式的推导和运用公式计算圆柱的体积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体转化成已学过的立体图形,再通过观察、比较找出两个图形之间的关系,来推导出圆柱的体积计算公式。《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。在此之前,学生已掌握了一定的几何知识与数学方法,部分学生思维活跃,数学成绩较好,加上“圆的面积公式”的推导的学习,辅以多媒体的教学,学生应该容易完成圆柱体体积计算公式的推导过程,为今后学习复杂的形体知识打下扎实的基础
[教学目的]
1、运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解其推导过程。
2、会用圆柱的体积计算公式计算圆柱形物体的体积或容积。
3、引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。
4、借助远程教育的课件资源演示,培养学生抽象、概括的思维能力。
[教学重难点]
圆柱体体积计算公式的推导过程
[设计理念及策略]
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”即要求我们在教学中,要让学生通过自主的知识建构活动,学生的潜能得以开发,情感、态度、价值观得以培养,从而提高学生的数学素养。因此根据本节课内容的特点,这节课的教学将通过对圆柱体积知识的探究,重点培养学生探究数学知识的能力和方法。为了把“一切为了学生的发展”这一新的教学理念融入到了课堂教学之中。在课堂教学中将以学生的活动为主,让学生通过亲身体验、实际操作来找出数学知识之间的内在联系。在学生学习过程中,充分运用了远程教育资源中动画、声音、视频文件,并进行了有效地整合。本节课将使用以下策略:
1、利用迁移规律引入新课,借助远程资源为学生创设良好的学习情境。
2、以合作探究为主要的学习方式,充分发挥学生的自主性,体现学生的主体地位。
3、练习多样化,层次化。
4、引导学生把知识转化成相应的技能,从而提高灵活运用的能力,培养学生的综合素质。
[教学准备]
多媒体课件、圆柱体体积演示器
[教学过程]
一、回忆旧知,实现迁移。
1、学习圆的面积时,我们是怎样推导出圆的面积计算公式的?利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。
2、计算圆的面积。
A.半径5厘米
B.直径6分米
二、指名说说自己想法。
教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积)
1、交流猜测谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?怎样转化呢?
2、生讨论,交流。
三、验证。
教师演示:
(1)屏幕上呈现一个圆柱体变为一个长方体(圆柱与长方体等底等高)的动画。提问:变化过程中,圆柱的什么变了(截面)?什么没有变(高、体积)?
(2)将圆柱的底面、长方体的底面闪烁后移出来。提问:你学过将圆变成长方形吗?
(3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。让学生取出圆柱体学具拼成近似长方体。
四、探索圆柱与所拼成的近似长方体之间的关系。
1、学生动手进行实验。请每个小组拿出学具,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。
2、学生利用学具独立操作(教师巡视、指导操作有困难的学生),思考并讨论。
3、通过刚才的实验你发现了什么?
①拼成的近似长方体的体积与原来的圆柱体积有什么关系? ②拼成的近似长方体的底面积与原来圆柱的底面积有何关系? ③拼成的近似长方体的高与原来的圆柱的高有什么关系?
4、学生汇报交流。
五、分析关系,总结公式引导学生发现并说出:
圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。 总结公式。
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
六、拓展训练。
一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?
七、课堂总结。
[附:板书设计]圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
[教学反思]
1、这节课是通过观察、猜想、操作验证、巩固、应用这几个环节来完成的。学生在最佳的情景中通过实践、探索、发现,得到了“活”的知识,学到有价值的数学。
2、操作验证是本节课的关键,为体现活动教学中学生“主动探索”的.特点,我从问题入手,组织学生围绕观察猜想后展开验证性的操作活动。学生以活动小组为单位,思维活跃,积极探索,学习能力、抽象概括能力和逻辑思维能力得到了提高。
3、充分利用媒体资源,化解难点,提高课堂效果;注重习题多样化、层次化,拓展学生思维。
一、情景引入
1、举起圆柱形水杯。
(1)同学们请看,这是一个什么形状的被杯子?关于圆柱的知识你都知道哪些?生充分交流。
很好,关于圆柱你还想知道什么啊?
体积是吗?
(2)如果,老师在杯子里面装满水(用水瓶在杯子里倒水,提起学生兴趣),你能知道这些水的体积是多少吗?
生充分交流
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算(求水的体积了)。评价:这个方法真好,把它转化为求长方体的体积来求水的体积。量筒学生能说出来就说,不能就直接过去。
(那么现在我想知道杯子的体积,,你有什么好的方法吗?)学生交流测量不规则物体。
同学们,是不是所有的圆柱都能用刚才的办法求出体积呢?(出示课件压路机柱子)。如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?
这就需要我们探究出一种适合所有圆柱体积的计算方法,这节课就让我们一起来研究圆柱的体积(出示课题:圆柱的体积)板书课题:圆柱的体积。
二、新课教学:
(1)学生猜想环节
师:大家猜想圆柱体体积和什么有关?学生交流。说出为什么?自己比划着说,也可以用事物演示,比较高和底)
同学们的思想都很活跃,那么现在你们想采用什么方法去研究圆柱体体积? (万一没有会的,就要引:我们过去学习图形的时候,都是通过哪些方法研究学习。转化。)
让我们在一起回顾一下圆形面积的推导过程(演示圆形的推导过程)
我们能把一个圆采用化曲为直、化圆为方的方法,把圆转化为长方形,从而推导出了圆面积的计算公式,板书。转化圆转化为长方形。
(2)学生探究环节
现在能否采用类似的方法,将圆柱转化成我们学过的图形来求它的体积呢?来求出它的体积。先独立思考,再把你的想法在组内交流一下。让学生说出怎么样切割。
谁能说说该怎么分,拿出萝卜,这就是一个圆柱,你想怎么分?亮出刀,来吧,请动手。
教具演示,一共是16份,让我们闭着眼睛想象一下32,,64份是什么样?(渗透极限思想,得板书出极限)抬头看大屏幕,看看你们想的和老师分的一样吗?
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),放到64份时,问学生,看到这里,你发现了什么?:分成的扇形越多,拼成的立体图形就越接近于长方体。
那么现在你能探究出圆柱的体积公式了吗?请拿出书包里的学具,同桌两人一组,共同探究,看看哪组同学最善于观察也最会配合。
让学生说,结论都是学生说出来的,老师不要多话。
学生研究,上来交流,自由选择用教具还是大屏幕。
出示课件,最后总结,刚才,我们通过将圆柱转化长方体(板书):,推导出了圆柱的体积公式:板书能用字母表示出来吗?v=sh
简直太棒了,现在让我来考考大家把,看看你们能不能学以致用。
三、练习巩固
(1)口答
(2)分层练习,采用星级分等,让学生自由选择1到3题。星级越高,难度越大。
(3)知道体积求高的练习,设计到单位的转换。
(4)开放性题目,自己动手求一个杯子(圆柱)的体积。
教学反思:
这次送课下乡的经历,对我来说是一次难得的锻炼机会。这期间的备课、上课、听评课,让我对数学教学的一些方法性问题有了更进一步的认识,并且对自身存在的问题也有了更明确的了解,利于今后有针对性的进行解决。
先来说一说我通过这次送课下乡,对数学教学的一些方法性认识。首先就是“生生互动”。“师生互动”在我的课堂上体现的应该是比较多的,但是通过丛老师和夏主任等老师的评课,我更深刻的体会到了,现在的课堂更加需要的事“生生互动”。要给学生更多的话语权和自由度。这节课,其实我也尝试了让学生之间去交流,比如说各种小组合作,同桌合作,还有学生回答问题遇到困难的时候自己找其他同学帮助等方式,但是感觉还是停留在表层,没有深入进去。这点在以后的教学中应该引以为戒。
“个教育”的初步尝试。在课堂上,如何体现个教育。决定不单单是出示几个简单的分层练习,更重要的事要有对知识点的分层,对全体学生具体学习情况的一种把握。个教育,更要求老师把握学生的实际情况,因人而异,因班而异。本节课,在探究圆柱体积公式的时候,我当时让学生讨论了两种方法,一种是底面积乘高,一种是底面周长一半乘高乘半径。这样一讲,反而起到了时而其反的效果,本来学生挺明白的了,一讲,反而有学生糊涂了,这是因为桥头整体学生水平还不是太高,造成的问题。
下面我具体谈谈对本节课的教学设计和教学过程的一些反思:
圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在设计教案的时候,我比较注意以下几点:一、抓住新旧知识的联系,利用转化的方法,通过想象、实际操作,从经历和体验中思考,让学生自己探究出圆柱的体积计算公式。二、创设贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和。三、设计练习的时候注重多层次问题,以及开放性问题的设计,满足不同程度学生的需求,将练习的选择权利放手给学生,特别是星级题目的方式,让学生感到很新奇,激发了学生挑战难题的欲望,和解决问题的热情。四、培养学生问题意识。“问题是数学的心脏。”学生有了问题,才会思考和探索,有探索才会有发展。所以我整堂课的设计都是用一个一个的问题串起来的,特别是导课的时候用一次一次的质疑,将学生的积极性都调动起来了,营造出一种学生想要迫切探究圆柱体积计算方法的氛围。这些都是我这节课的一些比较成功的地方。当然这节课也留下了很多的遗憾:首先就是以往上课语言表达的问题再次被点了出来,这次虽然较以往说话语速过慢变成了较快了,可是还是没有什么高低起落调,所以让听课的学生和老师都感觉缺少激情,这个问题应该尽快解决。再就是,课堂上,对学生的放手不够,学生的自主权还是欠缺的,新的理念告诉我们,学生已不是课堂教学中的听众、观众、知识的接受者,而需要成为课堂教学的主动参与者、问题者、自主者、合作者,所以在今后的教学中要着重增加学生的自主权,让学生自己提问题,自己解决问题,遇到困难先求助同学。老师一引导为主,在教学设计的时候,要敢于给学生广阔的空间,本节课,在引导学生猜想解决圆柱体积问题的时候,我先给学生复习了圆转化为长方形的过程,从一定程度上,限制了学生的思维。如果能把这个环节改为温馨提示性质的小提醒,效果就会截然不同了。
作为一名青年教师,要抓住每一次这样的机会,去积极认真的准备课,全身投入的上课,还要深刻,认真的反思,在不反思中提高、在反思中对症下药。
一次难忘的比赛作文300字经典8
一、复习导入
1、回顾上节课内容,提问:圆柱的特征,圆柱的表面积计算方法。
导入:这节课我们学习圆柱的体积、
2、想一想,提问:什么叫做体积?我们学过哪些物体的体积计算公式?
(物体所占空间的大小叫做体积、学过长方体正方体的、)
它们的计算公式是什么?可以归纳为:
长(正)方体的体积===底面积*高
3、想一想:圆面积计算公式的推导过程、
(把圆面积转化为一个近似的长方形的面积,从而推导出圆面积的计算公式)
那么,能不能把圆柱转化为我们已学过的图形来计算它的.体积?
二、新授:
叙:以上研究圆面积计算公式的方法叫做割补法,这种方法也适用于推导圆柱体积的计算公式、下面请同学们打开课本看书自学。
演示并提问:
(1)拼成的长方体的体积与圆柱的体积有什么关系?
(2)拼成的长方体的底面积与圆柱的哪部分有关系?有什么关系?
(3)拼成的长方体的高与圆柱的哪部分有关系?有什么关系?
总结:长方体的体积与圆柱的体积相等,长方体的底面积与圆柱的底面积相等,长方体的高与圆柱的高相等。
因为:圆柱的体积===长方体的体积
长方体的体积===底面积*高
↓↓↓
所以:圆柱的体积===底面积*高
用字母表示为:v==sh
运用以上公式,完成练习题、
(注意:单位要统一,要认真审题,认真计算、)
动脑筋,思考以下几个问题:
已知如下条件,如何求圆柱的体积?
(1)底面积s、高h→→体积v==
(2)底面半径r、高h→→体积v==
(3)底面直径d、高h→→体积v==
(4)底面周长c、高h→→体积v==
强调:圆柱的体积v=sh=rh,在没有告诉底面积和高时,要先找底面半径和高,应用v=rh去计算。
三、巩固练习(填表)
hvs=20平方分米
4分米
r=5厘米
10厘米
d=8分米
6分米
c=12、56米
2米
四、课堂小结
同学们,通过这堂课的学习你知道了些什么?谁来说一下。
回答得非常好,下去以后可以应用所学知识去解答一些实际问题。
板书设计:
圆柱的体积
圆柱的体积===底面积*高
↓↓↓
长方体的体积===底面积*高v==sh
作业设计:完成习题
一次难忘的比赛作文300字经典9
教学内容:
苏教版义务教科书《数学》六年级下册第15~16页例4、“试一试和“练一练”,第17页练习三第1~2题。
教学目标:
1、使学生结合具体情境,探索并掌握圆柱体积的计算方法,初步学会应用公式计算圆柱的体积,并解决相关的实际问题。
2、使学生在观察、猜想、验证、归纳等数学活动过程中,进一步感受转化思想,积累数学活动的经验,培养应用已有知识探究和解决新问题的能力;培养观察、比较和分析、概括等思维能力,进一步发展空间观念。
3、使学生主动参与学习活动,培养乐于思考、善于思考的品质;进一步体会探索和获得新知的成功过程,提高学习数学的兴趣和学好数学的自信心。
教学重点:
探索并掌握圆柱的体积公式。
教学难点:
理解圆柱体积计算公式的推导过程。
教学准备:
圆柱体转化成长方体的学具。
教学构想:
这部分内容是在学生学算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。例4先比较等底等高的长方体、正方体和圆柱体之间的体积关系,建立圆柱体积公式的猜想;然后把探索圆面积公式的方法迁移过来,通过操作验证圆柱公式的猜想。“试一试’和”练一练”都是让学生应用刚刚学习的体积公式计算圆柱的体(容)积,解决简单的实际问题,巩固加深对公式的理解。
教学过程:
一、复习导入
呈现长方体、正方体和圆柱的直观图。
提问:认识这些几何体吗?说说各是什么形状。
你能求出哪个几何体的体积?
集体交流,教师板书:
长方体体积=长×宽×高;
正方体体积=棱长×棱长×棱长;
长方体(正方体)体积一底面积×高。
引导:圆柱的体积怎样计算呢?它和我们以前学习的知识有没有联系呢?今天我们就一起来探索圆柱体积的计算方法。(板书:圆柱的体积)
二、教学例4
1、观察比较,建立猜想。
(1)出示例4,指名读题,明确底面积和高都分别相等。
提问:长方体和正方体的体积相等吗?为什么?
集体交流得出:长方体和正方体的底面积相等,高也相等;长方体和正方体的体积都等于底面积乘高,所以它们的体积相等。
(2)提问:猜一猜,圆柱的体积与长方体、正方体的体积相等吗?把你的想法在小组里交流。
集体交流,引导学生猜想圆柱的体积与长方体、正方体的体积可能相等,也就是可能等于底面积乘高。
(1)引导:同学们认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?在小组里讨论。
小组讨论,教师适时提醒:圆可以转化成近似的长方形计算面积,圆柱是否也可以转化成近似的长方体计算体积呢?
引导得出:圆可以转化成近似的长方形,按同样的方法把底面圆平均分,把圆柱切开,可以拼成近似的长方体。
(2)提问:你能按这样的想法把圆柱转化成长方体吗?各小组拿出课前准备好的圆柱学具,试着把它拼一拼
小组合作,动手操作。
集体交流,部分小组派代表说一说拼的方法。
得出:把圆柱的底面平均分成16份,切开后拼成了一个近似的长方体。
(3)启发:如果把圆柱的底面平均分的份数再多一些,比如平均分成32份、64份……切开后拼成的.物体会有什么变化呢?同学们可以先在头脑里想象一下。
让学生说说把圆柱底面平均分成32份、64份……切开后拼成的物体会有什么变化。
课件演示把圆柱的底面平均分成32份、64份……切开依次拼一拼提问:和你想象的一样吗?拼成的物体有什么变化?这说明什么?
小结:把圆柱的底面平均分的份数越多,切开后拼成的物体就越接近长方体。这样无限地分下去,就能拼成长方体。
3、观察比较,推导公式。
提问:拼成的长方体与原来的圆柱有什么关系?
学生交流后,借助示意图小结:拼成的长方体的体积与圆柱的体积相等;拼成的长方体的底面积等于圆柱的底面积,高等于圆柱的高。
追问:想一想,可以怎样求圆柱的体积?
根据学生的回答,小结并板书圆柱的体积公式:
圆柱的体积=底面积×高
谈话:如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,(出示直观图,并用字母表示底面积和高)你能用字母表示圆柱的体积公式吗?
指名口答,教师板书:V=Sh。
4、回顾过程,反思交流。
提问:回顾圆柱体积公式的探索过程,你知道了什么,有什么体会?把你的想法在小组里交流。
小组交流后全班反馈。
小结:推导圆柱体积公式的过程让我们知道,可以利用长方体体积公式推导出圆柱体积公式。推导时可以联系圆转化成长方形的方法,把圆柱切开拼一拼,转化成长方体,发现拼成的长方体和圆柱体积相等,得出圆柱体积的计算方法和长方体、正方体一样,也用底面积乘高。
5、完成“试一试”。
指名读题,理解题意。
学生独立完成,指名板演。
集体订正。
提问:计算这个零件的体积应该先算什么,再怎么算?
说明:根据圆柱体积的计算方法,求体积要用底面积乘高。当底面积未知时,可以先求底面积,再计算体积。
三、巩固应用
1、完成练习三第1题。
出示表格,学生独立填写。
指名口答,集体订正。
提问:这里是怎样计算圆柱体积的?
2、完成“练一练”第1、2题。
学生独立完成,指名板演。
集体交流,让学生说出每题的思考过程。
提问:比较这两题的解答过程,有什么相同点与不同点?
得出:两题都是求圆柱的体积,都是先求底面积,再用底面积乘高求出体积。但这两题已知条件不同,第1题两小题是已知圆柱的底面直径或半径和高,第2题是已知圆柱的底面周长和高,计算时注意根据不同的条件,用相应的方法先求出圆柱的底面积,再计算圆柱的体积。
四、课堂总结
提问:这节课我们学习了什么内容?圆柱的体积公式是怎样推导出来的?你还有哪些体会?
一次难忘的比赛作文300字经典10
教学目标:
1、使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。
2、使学生体验解决问题策略的多样化,不断激发学生以数学的好奇心和求知欲。
3、培养学生分析问题,解决问题及实践应用能力。
教学重点:
掌握有关圆柱的表面积和体积的计算,会综合运用
教学难点:
运用所学的知识解决生活中的实际问题。
学习过程:
一、复习回顾
1、下列图形的面积公式是什么?
长方形的面积=
正方形的.面积=
平行四边形的面积=
梯形的面积=
圆的面积=
2、长方体的表面积=
圆柱的表面积=
二、探究圆柱的体积公式:
圆柱的体积= 。
如果圆柱的体积用V表示,底面积用S表示,高用h表示,则圆柱的体积公式用字母表示为。
如果圆柱的底面半径为r,高用h表示,则圆柱的体积公式为。
三、例题学习:
把一个棱长6分米的正方体木块切削成一个体积最大的圆柱体,这个圆柱的体积是多少立方分米?
例2、一个底面半径为3分米,高为8分米圆柱形水槽,把一块石块完全浸入这个水槽,水面上升了2分米,这块石块的体积是多少?
四、课堂练习
1、求下面圆柱的体积
1)底面积0.6平方米,高0.5米2)底面半径4厘米,高12厘米
3)底面直径5分米,高6分米
2、一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?
一次难忘的比赛作文300字经典11
教学目标:
1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;
2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。
3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。
教学重点:
掌握和运用圆柱体积计算公式进行正确计算。
教学难点:
理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学准备:
1、用于演示把圆柱体积转化成长方体体积的教具。
2、多媒体课件。
教学过程:
一、复习导入、揭示课题
谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高)
1、呈现长方体、正方体和圆柱的直观图。
2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。(板书课题:圆柱的体积)
3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。
二、自主探究,精讲点拨
1、教师:那么今天我们要研究的`圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?
2、学生小组讨论、交流。
教师:同学们自己先在小组里讨论一下
(1)你准备把圆柱体转化成什么立体图形?
(2)你是怎样转化成这个立体图形的?
(3)转化以后的立体图形和圆柱体之间有什么关系?
3、推导圆柱体积公式。
学生交流,教师动画演示。
(1)把圆柱体转化成长方体。
(2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)
(3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。
(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)
(5)推导圆柱体积公式。
讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)
教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:
圆柱的体积 = 底面积×高
V = S h
三、运用公示,解决问题
教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?
①知道圆柱的底面积和高,可以求圆柱的体积。
练习七的第1题:填表。
②知道圆柱的底面半径和高,可以求圆柱的体积。
试一试。
③知道圆柱的底面积直径和高,可以求圆柱的体积。
练一练的第1题:计算下面各圆柱的体积。
④知道圆柱的底面周长和高,可以求圆柱的体积。
一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?
四、迁移应用,质疑反馈。
1、判断正误,对的画“√”,错误的画“×”。
2、计算下面各圆柱的体积。
3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。
五、全课小结。
这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。
六、作业布置:
完成作业纸上的习题
教学反思
本节可的教学内容是九年义务教育苏教版六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。
而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
不足之处是:
1、
2、 留给学生自由讨论、实践和思考的时间较少。 教学时教师语言过于平缓,没有调动起学生的积极性。
一次难忘的比赛作文300字经典12
教学目标:
1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:
圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教具:
圆柱的体积公式演示教具,圆柱的体积公式演示课件
教学过程:
一、教学回顾
1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入
(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?
(2)、我们都学过那些立体图形的体积公式。
二、积极参与探究感受
1、猜测圆柱的体积和那些条件有关。(电脑演示)
2、.探究推导圆柱的体积计算公式。
小组合作讨论:
(1)将圆柱体切割拼成我们学过的什么立体图形?
(2)切拼前后的两个物体什么变了?什么没变?
(3)切拼前后的两个物体有什么联系?
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)
2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?
3、要用这个公式计算圆柱的体积必须知道什么条件?
三、练习
1、填空
(1)、圆柱体通过切拼转化成近似的( )体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。因为长方体的体积等于
(),所以,圆柱体的体积等于()用字母表示
() 。
(2)、底面积是10平方米,高是2米,体积是
()。
(3)、底面半径是2分米,高是5分米,体积是
( )。
2讨论:
(1)已知圆柱底面的半径和高,怎样求圆柱的体积
V=兀r2 × h
(2)已知圆柱底面的直径和高,怎样求圆柱的体积
V=兀(d÷2)2×h
(3)已知圆柱底面的周长和高,怎样求圆柱的体积
V=兀(C÷兀÷2) ×h
3、练习:已知半径和高求体积,已知直径和高求体积。
四、小结或质疑
五、作业
课后做一做第1、2、3题。
板书设计:
圆柱的体积
长方体的体积=底面积x高
圆柱的体积=底面积x高
V=Sh
本节课的设计思考:
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的`欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。不足之处:
在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。
三、教师的语言非常贫乏
在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。
苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术
是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。
一次难忘的比赛作文300字经典13
教学内容:
苏教版义务教育教科书《数学》六年级下册第18-19页练习三第10—16题,思考题以及动手做。
教学目标:
1.通过知识梳理、交流展示等,使学生进一步理解圆柱表面积和体积的区别,能选择恰当的方法解决问题,在浸没实验中,能测算出不规则物体的体积,积累活动经验,提升实验素养。
2.使学生经历观察、操作、比较、分析、估计、类比、归纳等活动过程,培养学生初步的比较、分析、综合、抽象、概括,以及简单的判断、推理能力,提高转化的意识和能力,发展数学思考,增强空间观念。
3.通过丰富的数学学习活动,使学生进一步体会数学与生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
教材分析:
圆柱和圆锥这部分内容是学生认识了圆,掌握了长方体和正方体的形状特征以及表面积与体积计算方法的基础上编排,是小学数学最后教学的形体知识。与长方体、正方体一样,圆柱也是基本的几何形体,在日常生活和生产劳动中经常能够看到。教学圆柱能够扩大学生认识几何形体的范围,丰富对形体的.认识,有利于解决更多的实际问题。教学圆柱,也能够丰富学生认识几何形体的活动经验,深入理解体积的意义,有利于完善认知结构,发展空间观念,有利于转化能力和推理能力的进一步提高。
学情分析:
学生在过去的学习中已经积累了十分丰富的图形与几何的学习经验,特别是圆面积的计算方法,长方体、正方体、圆柱和圆锥的特征,长方体、正方体和圆柱的表面积和体积的计算方法等知识的探索过程,以及在这些过程中获得的学习经验和方法,都为本课圆柱体积的综合练习奠定了坚实的基础。本节课,学生通过知识梳理、交流展示等活动,可以进一步理解圆柱表面积和体积的区别,并能选择恰当的方法解决问题,发展数学思考,增强空间观念,进一步体会数学与生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
设计理念:
从以教定学,到以学定教,再到由学转教。学习金字塔理论告诉我们:最好的学习是讲给别人听,随着教学改革的不断推进,我们从“以教定学”走向了“以学定教”,以学定教,呼唤教育教学回到学生的真实学情、现实认知水平等方面上来,根据学生的“学”,设计教师的“教”,日益凸显了教师是组织者、引导者、合作者的角色定位。叶圣陶先生说过,“教是为了不教”,赋予“以学定教”更多的生长意义,我们在不知不觉中,从“以学定教”转向了“由学转教”,即由学生的学转为由学生来教的更高级的学习生态。教学方式的改变让我们更加明确了学习的意义。
重点难点:
教学重点:用圆柱的表面积和体积公式解决实际问题。教学难点:合理分析问题并选择恰当算法,增强空间观念。
教学准备:
教师准备:反馈器一套;希沃白板、课件及5块互动大屏;投影仪;两份合作学习(实验)单;板贴一套等。
学生准备:底面被平均分成16份的圆柱形学具16套;知识梳理图50张;预学单50张;圆柱形容器及土豆或铁块若干等。
一次难忘的比赛作文300字经典14
教学准备
1.教学目标
1.加强实践操作,尽量让学生自己动手,亲历圆柱体积的转化过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。
2.加强习题设计,设计一些实践性、开放性强的习题,引导学生灵活运用知识,尽可能地满足不同思维水平学生的需要,并渗透优化解题策略。
3.加强空间观念的培养,突出知识间的联系对比,在操作、推导、对比、运用中深化学生的空间观念。
2.教学重点/难点
教学重点:理解并掌握圆柱体积计算公式,并能应用公式计算圆柱体积。
教学难点:理解圆柱体积公式的推导过程。
3.教学用具
4.标签
《圆柱的体积》教学设计教学过程
一、情境激趣,导入新课。
同学们,让我们先来做一个实验:
1、师拿一个长方体和一个正方体容器,说说怎样计算它们的体积,接着往正方体容器中倒入一定量的水,然后拿出一个圆柱体准备投入水中让学生观察:有什么现象发生?由这个现象你想到了什么?
2、提问:你能用一句话说说什么是圆柱的体积吗?(板书课题)
[设计意图:通过把圆柱投入水中,水面上升,使学生直观感知圆柱体积大小的概念。]二、自主探究,学习新知
(一)设疑
1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?
2、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式就好了。
[设计意图:通过追问大厅内圆柱体积等问题,使学生意识到前面方法的局限性,使其产生思维困惑,激发学生探究圆柱体积计算方法的欲望,从而进入最佳学习状态。]
3、怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。
请大家想一想:在学习圆的面积时,我们是怎样把圆转化成已学的图形,来推导圆面积的计算公式的.
(学生回答后,把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,通过回顾圆的`面积的推导方法,巧妙地运用旧知识进行迁移。]
(二)猜想
怎样来计算圆柱的体积呢?
讨论:能不能把圆柱转化成我们已学过的立体图形,来计算它的体积?
引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?
(三)验证
1、为了证实刚才的猜想,我们可以通过实验来验证。
2、学生利用学具分组讨论以下问题:
圆柱体可以转化成哪种立体图形?
它又是怎么转化成这种图形的?(小组讨论后汇报交流)
把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。
3、指名两位学生上台用圆柱体积学具进行操作,把圆柱转化为近似的长方体。
4、根据学生操作,教师再次课件演示圆柱转化成长方体的过程,并引导学生分析当分的份数越多时,拼成的图形越接近长方体。
[设计意图:合理运用多媒体技术,形象生动地展示“分成的扇形越多,拼成的立体图形就越接近于长方体”,这里转化思想和极限思想得到应有的体现,同时也渗透了以直代曲的辩证唯物主义观点,发展了学生的空间观念。]
5、通过上面的观察,小组讨论:
圆柱与所拼成的近似长方体之间有什么联系?分四人小组展开讨论.
(1)圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?
(2)长方体各部分之间与圆柱体有怎样的关系?
(3)你认为圆柱的体积可以怎样计算?
生汇报交流,教师根据学生讲述适时板书。
近似长方体的体积=圆柱的体积
近似长方体的底面积=圆柱的底面积
近似长方体的高=圆柱的高
试着根据圆柱与近似长方体的关系,推导公式:
长方体的体积=底面积×高
圆柱的体积=底面积×高
用字母表示计算公式:
V=Sh
6、同桌相互说说圆柱体积的推导过程。
思考:
求圆柱的体积必须具备哪两个条件?
7、完成做一做:一根圆柱形木料,底面积为75平方厘米,长是90厘米。它的体积是多少?(生练习,展示并评价)
8、求圆柱体积要具备什么条件?
[设计意图:动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。]三、实际应用
1、反馈练习:
底面积是10平方米,高是2米,体积是( )
底面积是3平方分米,高是4分米,体积是( )
2、运用新知,尝试解答实际问题.
一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?
(1)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?赶紧试一试?
(2)在解题的过程中要注意单位统一。
(学生自己完成并汇报解题思路)
请同学们想一想
已知圆柱的底面半径和高,求体积
已知圆柱的底面直径和高,求体积
已知圆柱的底面周长和高,求体积
3.深入练习(小组合作)
(1)一个圆柱形状的零件,底面半径是5厘米,高8厘米。这个零件的体积是多少立方厘米?
(1)一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米.这个水桶的容积是多少立方分米?
(2)一个圆柱的体积是62.8立方分米,高是5分米,底面积是多少?
不会的可以向同学请教
4、拓展提高:
一个圆柱的石柱子底面的周长18.84分米,高是20分米,体积是多少?
[设计意图:让学生运用公式解决生活中的问题,使学生认识到数学的价值,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。]四、全课总结:
通过这节课的学习,你有哪些收获?(生汇报收获)
[设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。]
五、学生作业:
1、练习七的第l题完成在书上。
2、课本26页试一试。
3、一个圆柱的石柱子底面的周长18.84分米,高是20分米,体积是多少?(选做)
六、板书设计圆柱的体积
长方体体积=底面积×高
圆柱体体积=底面积×高
V=Sh
一次难忘的比赛作文300字经典15
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体
积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的'方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验
在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。
教材中圆锥体积的相对练习较少,但在考试里面实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或三分之四个圆柱的体积),而它们的体积相差2个圆锥的体积(或三分之二个圆柱的体积)??。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘三分之二从而使计算简便。
教学的最后我与孩子们一起通过大量的练习,引导总结出了圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。
总而言之,圆柱圆锥的体积计算是教学的重点和难点,也是考试中学生容易丢分的危险高发内容,我在后面的教学中需要精讲和精炼,让学生熟能生巧、巧能生精,内化成自己的数学直觉方为最高层次!
【一次难忘的比赛作文300字经典】相关文章:
一次难忘比赛作文07-02
一次难忘的比赛初中作文09-19
一次难忘朗诵比赛作文09-22
一次难忘的跑步比赛作文10-13
一次难忘的长跑比赛作文12-18
一次难忘的赛车比赛作文09-21
一次令我难忘的比赛作文10-24
一次难忘的朗诵比赛作文08-26
小学作文:难忘的一次比赛11-24
一次难忘的比赛350字作文11-23