- 相关推荐
数学学习方法记忆口诀
口诀原指道家传授道术时的秘语,后多指根据事物内容要点编成的便于记诵的语句,下面小编给大家介绍数学学习方法记忆口诀,赶紧来看看吧!

数学学习方法记忆口诀 1
集合与函数
内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,
若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,
偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;
其余函数实数集,多种情况求交集。
非常有规律,反解换元定义域;
反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;
函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;
图象第一象限内,函数增减看正负。
三角函数
三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;
向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,
变成锐角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,
保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1 减余弦想正弦,
幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,
先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,
简单三角的方程,化为最简求解集;
不等式
解不等式的.途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
数列等差等比两数列,通项公式N项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。
数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考;
一算二看三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化;
首先验证再假定,从 K向着K加1,
推论过程须详尽,归纳原理来肯定。
复数
虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。
虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。
几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,
逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。
利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。
四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
排列、组合、二项式定理
加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
立体几何
点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
数学学习方法记忆口诀 2
一、和差问题
已知两数的和与差,求这两个数。
口诀:
和加上差,越加越大;
除以2,便是大的;
和减去差,越减越小;
除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
二、鸡兔同笼问题
口诀:
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24
求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12
三、浓度问题
(1)加水稀释
口诀:
加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
加水先求糖,原来含糖为:20X15%=3(千克)
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)
糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
(2)加糖浓化
口诀:
加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
加糖先求水,原来含水为:20X(1-15%)=17(千克)
水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)
糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)
四、路程问题
(1)相遇问题
口诀:
相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)
(2)追及问题
口诀:
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,
时间就求对。
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
先走的路程,为3X2=6(千米)
速度的差,为6-3=3(千米/小时)。
所以追上的时间为:6/3=2(小时)。
五、和比问题
已知整体求部分。
口诀:
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12。
六、差比问题(差倍问题)
口诀:
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,
乘以各自的倍数,
两数便可求得。
例:甲数比乙数大12,甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,
所以甲数为:4X7=28,乙数为:4X4=16。
七、工程问题
口诀:
工程总量设为1,
1除以时间就是工作效率。
单独做时工作效率是自己的,
一起做时工作效率是众人的效率和。
1减去已经做的便是没有做的,
没有做的除以工作效率就是结果。
例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?
[1-(1/6+1/4)X2]/(1/6)=1(天)
八、植树问题。
口诀:
植树多少颗,
要问路如何?
直的减去1,
圆的是结果。
例1:在一条长为120米的马路上植树,间距为4米,植树多少颗?
路是直的。所以植树120/4-1=29(颗)。
例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗?
路是圆的,所以植树120/4=30(颗)。
九、盈亏问题
口诀:
全盈全亏,大的减去小的;
一盈一亏,盈亏加在一起。
除以分配的差,
结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)
例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?
全盈问题。大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。
例3:学生发书。每人10本则差90本;每人8 本则差8本,多少学生多少书?
全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)
十、牛吃草问题
口诀:
每牛每天的吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的',除以二者对应的天数的差值,
结果就是草的生长速率。
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
原有的草量除以剩余的牛数就将需要的天数求知。
例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;
大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)
结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
所以原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;
剩下的21-15=6去吃原有的草,
所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)
十一、年龄问题
口诀:
岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
十二、余数问题
口诀:
余数有(N-1)个,
最小的是1,最大的是(N-1)。
周期性变化时,
不要看商,
只要看余。
例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟?
分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。即时针相当于是18-2=16(点)。
数学学习方法记忆口诀 3
口诀一
1.有理数的加法运算:
同号相加一边倒;异号相加“大”减“小”,
符号跟着大的跑;绝对值相等“零”正好。
2.合并同类项:
合并同类项,法则不能忘,
只求系数和,字母、指数不变样。
3.去、添括号法则:
去括号、添括号,关键看符号,
括号前面是正号,去、添括号不变号,
括号前面是负号,去、添括号都变号。
4.一元一次方程:
已知未知要分离,分离方法就是移,
加减移项要变号,乘除移了要颠倒。
5.平方差公式:
平方差公式有两项,符号相反切记牢,
首加尾乘首减尾,莫与完全公式相混淆。
口诀二
1.完全平方公式:
完全平方有三项,首尾符号是同乡,
首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央。
2.因式分解:
一提(公因式)二套(公式)三分组,
细看几项不离谱,
两项只用平方差,
三项十字相乘法,
阵法熟练不马虎,
四项仔细看清楚,
若有三个平方数(项),
就用一三来分组,
否则二二去分组,
五项、六项更多项,
二三、三三试分组,
以上若都行不通,拆项、添项看清楚。
3.单项式运算:
加、减、乘、除、乘(开)方,
三级运算分得清,
系数进行同级(运)算,
指数运算降级(进)行。
4.一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号,
同类项合并好,再把系数来除掉,
两边除(以)负数时,不等号改向别忘了。
5.一元一次不等式组的解集:
大大取较大,小小取较小,
小大、大小取中间,
大小、小大无处找。
6.一元二次不等式、一元一次绝对值不等式的解集:
大(鱼)于(吃)取两边,
小(鱼)于(吃)取中间。
口诀三
1.分式混合运算法则:
分式四则运算,顺序乘除加减,
乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,
分子分母相约,然后再行运算;
加减分母需同,分母化积关键;
找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。
2.分式方程的解法步骤:
同乘最简公分母,化成整式写清楚,
求得解后须验根,原(根)留、增(根)舍,别含糊。
3.最简根式的条件:
最简根式三条件,号内不把分母含,
幂指数(根指数)要互质、幂指比根指小一点。
4.特殊点的坐标特征:
坐标平面点(x,y),横在前来纵在后;
(+,+) ,(-,+),(-,-)和(+,-),四个象限分前后;
x轴上y为0,x为0在y轴。
5.象限角的平分线:
象限角的平分线,坐标特征有特点,
一、三横纵都相等,二、四横纵却相反。
6.平行某轴的直线:
平行某轴的直线,点的坐标有讲究,
直线平行x轴,纵坐标相等横不同;
直线平行于y轴,点的横坐标仍照旧。
7.对称点的坐标:
对称点坐标要记牢,相反数位置莫混淆,
x轴对称y相反,y轴对称x相反;
原点对称最好记,横纵坐标全变号。
口诀四
1.自变量的取值范围:
分式分母不为零,偶次根下负不行;
零次幂底数不为零,整式、奇次根全能行。
2.函数图象的移动规律:
左右平移在括号,上下平移在末稍,
左正右负须牢记,上正下负错不了。
3.一次函数的图象与性质的口诀:
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远。
4.二次函数的图象与性质的口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与y轴来相见;
b的符号较特别,符号与a相关联;
顶点位置先找见,y轴作为参考线;
左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现;
横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,
一般、顶点、交点式,不同表达能互换。
5.反比例函数的图象与性质的.口诀:
反比例函数有特点,双曲线相背离得远。
k为正,图在一、三(象)限;
k为负,图在二、四(象)限。
图在一、三函数减,两个分支分别减;
图在二、四正相反,两个分支分别增。
线越长越近轴,永远与轴不沾边。
口诀五
1.特殊三角函数值记忆:
记住30度、45度、60度的正弦值、余弦值的分母都是2;
正切、余切的分母都是3;
分子记口诀“123,321,三九二十七”既可。
三角函数的增减性:正增余减
2.平行四边形的判定:
要证平行四边形,两个条件才能行,
一证对边都相等,或证对边都平行,
一组对边也可以,必须相等且平行。
对角线,是个宝,互相平分“跑不了”,
对角相等也有用,“两组对角”才能成。
3.梯形问题的辅助线:
移动梯形对角线,两腰之和成一线;
平行移动一条腰,两腰同在“△”现;
延长两腰交一点,“△”中有平行线;
作出梯形两高线,矩形显示在眼前;
已知腰上一中线,莫忘作出中位线。
4.添加辅助线歌:
辅助线,怎么添?找出规律是关键。
题中若有角(平)分线,可向两边作垂线;
线段垂直平分线,引向两端把线连;
三角形边两中点,连接则成中位线;
三角形中有中线,延长中线翻一番。
口诀六
圆的证明歌:
圆的证明不算难,常把半径直径连;
有弦可作弦心距,它定垂直平分弦;
直径是圆最大弦,直圆周角立上边,
它若垂直平分弦,垂径、射影响耳边;
还有与圆有关角,勿忘相互有关联,
圆周、圆心、弦切角,细找关系把线连。
同弧圆周角相等,证题用它最多见,
圆中若有弦切角,夹弧找到就好办;
圆有内接四边形,对角互补记心间,
外角等于内对角,四边形定内接圆;
直角相对或共弦,试试加个辅助圆;
若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端,
直线与圆有共点,证垂直来半径连,
直线与圆未给点,需证半径作垂线;
四边形有内切圆,对边和等是条件;
如果遇到圆与圆,弄清位置很关键。
数学学习方法记忆口诀 4
数学公式口诀:和差化积公式
和差化积公式
和差化积需同名,
变量置换要记清;
假若函数不同名,
互余角度换名称。
简记为:
S+S=2S·C
S-S=2C·S
C+C=2C·C
C-C=-2S·S
数学公式口诀:三倍角正弦与余弦函数公式
三倍角正弦与余弦函数公式
三倍角正弦:3减43。
三倍角余弦:43减3。
系数后面很好记,
都是单角的同名函数。
公式:
sin3θ=3sinθ-4sin3θ。
cos3θ=4cos3θ-3cosθ。
数学公式口诀:通过正六边形记三角公式
记忆三角公式,有一张图形会对我们有所帮助:
在这个六边形中,位于对角线两端的两项乘积均为1,即:tgα·ctgα=1,sinα·cscα=1,cosα·secα=1,共三个公式。画有格线的三角形中,肩上两角两项的平方和等于下面一项的平方,即sin2α+cos2α=1,ctg2α+1=csc2α,tg2α+1=sec2α,共三个公式。相邻三个顶点的外项乘积等于中间一项,即:sinα=cosα·tgα,cosα=sinα·ctgα,tgα=sinα·secα共六个公式。该图形中,正弦、正切、正割依次位于六边形右侧,而余弦、余切、余割位于左侧,易于记住。记住一个图形即可记起十几个公式,确是一种经济省力的记忆方法。
数学公式口诀:记忆诱导公式
记忆诱导公式
关于180°±α,360°±α,-α的诱导公式口诀为:
函数名不变,
符号看象限。
关于90°±α,270°±α的诱导公式口诀为:
函数名改变,
符号看象限。
说明,①不管α是什么样的角,都把它看作锐角来确定诱导公式中角所在的象限,从而确定它的符号。
②符号的确定,是由原来函数的角所在象限决定的。
③函数名改变,指正弦、余弦互变,正切、余切互变,正割、余割互变。
三角函数诱导公式的共同特点
奇变偶不变
符号看象限
数学公式口诀:三角函数值在象限内的.符号
郑玄吃鱼
说明:郑玄是我国三国时的一位数学家。“郑玄吃鱼”可以帮助记忆六个三角函数在四个不同象限内的符号。“郑”,(Ⅰ)中皆为正(音同郑);“玄”,(Ⅱ)只有正弦(音近弦)和它的倒函数余割为正;“吃”,(Ⅲ)中只有正切(音近切)和它的倒函数余切为正;“鱼”,(Ⅳ)只有余(音同鱼)弦和它的倒函数正割为正。
三角函数符号、互倒及奇偶性记忆法
如果将三角函数按顺序编号,正弦函数为一,余弦函数为二,正切函数为三,余切函数为四,正割函数为五,余割函数为六,那么可以熟记下面的口诀:
全正;一、六;
三、四;二、五;
二、五不变。
说明:在第一象限六个函数都为正,第二象限一、六为正(即正弦,余割函数为正,其余四个函数都为负);第三象限三、四为正(即正切,余切为正,其它为负);第四象限二、五为正(即余弦、正割为正,其余为负)。二、五不变,是说余弦,正割为偶函数〔cos(-x) =cosx,sec(-x)=secx〕,其余四个函数均为奇函数。并且一、六,三、四,二、五互为倒数关系(即sinα· cscα=1,tgα·ctgα=1,cosα·secα=1)。
数学公式口诀:圆的辅助线之歌
圆的辅助线之歌
三圆和两圆,
圆心紧相连;
两圆紧为伴,
必连公切线;
两圆扣成环,
必连公共弦。
说明:几何题目涉及两圆、三圆的问题,常常把它们的圆心连起来。两圆若外切和内切要作出它们的公切线;两圆若相交要作出其公共弦。
数学公式口诀:平面几何辅助线一般添加法
平面几何辅助线一般添加法
角之关系要细辨,
构造等、差、倍、半是关键。
比例线段平行线,
构造相似三角形也常见。
比例线段中有和差,
延截相等线段好办法。
诸圆相交公共弦,
有时得用连心线。
诸圆相切公切线,
切点圆心还需连。
直角相对想共圆,
互补二角共弦想共圆,
四边形外角等于不相邻内对角想共圆。
若遇中点找中点,
两点相连平行线。
角之平分线遇垂线,
延长垂线得等边。
【数学学习方法记忆口诀】相关文章:
英语语法的记忆口诀05-22
音标发音规律记忆口诀09-20
小学语文学习方法口诀07-06
小提琴把位记忆口诀08-01
注会税法教材记忆口诀大全10-11
科目一考试技巧记忆口诀06-20
科目一知识点记忆口诀10-13
2016最新中药学记忆口诀08-02
科目一考试记忆技巧口诀分享08-30
英语音标口诀记忆法10-30