小学数学知识点总结
总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料。同时总结是一个词语,可做动词,也可作名词,另外也是一种应用文体。对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性的结论。
小学数学知识点总结1
一生活中的数
(一)本单元知识网络:
(二)各课知识点:
可爱的校园(数数)
知识点:
1、按一定顺序手口一致地数出每种物体的个数。
2、能用1-10各数正确地表述物体的数量。
快乐的家园(10以内数的认识)
知识点:
1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。
2、在数数过程中认识1-10数的符号表示方法。
3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。
玩具(1~5的认识与书写)
知识点:
1、能正确数出5以内物体的个数。
2、会正确书写1-5的数字。
小猫钓鱼(0的认识)
知识点:
1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。
2、学会读、写“0”。
文具(6~10的认识与书写)
知识点:
1、能正确数出数量是6-10的物体的个数。
2、会读写6—10的数字。
小学数学知识点总结2
小学数学知识点全总结之一:运算定律
加法交换律 a+b=b+a
结合律 (a+b)+c=a+(b+c)
减法性质 a-b-c=a-(b+c)
a-(b-c)=a-b+c
乘法交换律 a×b=b×a
结合律 (a×b)×c=a×(b×c)
分配律 (a+b)×c=a×c+b×c
除法性质 a÷(b×c)=a÷b÷c
a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)
■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.
推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍.
一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.
■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变.
推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.
被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.
■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数.
如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100.
小学数学知识点全总结之二:简易方程
■用字母表示数
用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律.
■用字母表示数的注意事项
1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.
2、当1和任何字母相乘时,“ 1” 省略不写.
3、数字和字母相乘时,将数字写在字母前面.
■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,应注意书写格式
■等式与方程
表示相等关系的式子叫等式.
含有未知数的等式叫方程.
判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.
■方程的解和解方程
使方程左右两边相等的未知数的值,叫方程的解.
求方程的解的过程叫解方程.
■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.
■解方程的方法
1、直接运用四则运算中各部分之间的关系去解.如x-8=12
加数+加数=和 一个加数=和-另一个加数
被减数-减数=差 减数=被减数-差 被减数=差+减数
被乘数×乘数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=除数×商
2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41
先把3x看作一个数,然后再解.
3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,
要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解.
4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20
先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解.
小学数学知识点全总结之三:比和比例
■比和比例应用题
在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”.
■解题策略
按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答
■正、反比例应用题的解题策略
1、审题,找出题中相关联的两个量
2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.
3、设未知数,列比例式
4、解比例式
5、检验,写答语
小学数学知识点总结3
人教版小学数学知识点大全 基本概念
第一章 数和数的运算 一、概念 (一)整数
1、整数的意义
自然数和0都是整数。
2、自然数
我们在数物体的时候,用来表示物体个数的1,2,3??叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿??都是计数单位。其中“一”是计数的基本单位。
10个1是10,10个10是100??每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
? 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
? 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。? 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。以此类推。 (二)小数
1、小数的意义
把整数1平均分成10份、100份、1000份?? 得到的十分之几、百分之几、千分之几?? 可以用小数表示。如1/10记作0.1,7/100记作0.07。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)??小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
3、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
4、比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大??
5、小数的分类
? 纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
? 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
? 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
? 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 ?? 3.1415926 ??
? 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
? 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 ?? 0.0333 ?? 12.109109 ??
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ??的循环节是“ 9 ” , 0.5454 ??的循环节是“ 54 ” 。
? 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 ?? 0.5656 ??
? 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 ?? 0.03333 ??
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。 (三)分数
1、分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
? 分母相同的分数,分子大的那个分数就大。
? 分子相同的分数,分母小的那个分数就大。
? 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
? 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
? 真分数:分子比分母小的分数叫做真分数。真分数小于1。
? 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
? 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质
? 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。? 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
? 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分
? 分子、分母是互质数的分数,叫做最简分数。
? 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
? 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
? 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
? 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒 数
? 乘积是1的两个数互为倒数。
? 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
? 1的倒数是1,0没有倒数 (四)百分数
1、百分数的意义
表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。
2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
4、百分数与折数、成数的互化:
例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。
5、纳税和利息:
税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。由银行规定按年或按月计算。
利息的计算公式:利息=本金×利率×时间
6、百分数与分数的区别主要有以下三点:
? 意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等。
? 应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
? 书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
7、数的互化
? 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
? 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
? 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
? 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
? 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
? 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
? 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (五)数的整除
1、整除的意义
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
2、约数和倍数
? 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就(来自:WWw.SmhaiDa.com :小学数学总结)叫做a的约数(或a的因数)。倍数和约数是相互依存的。
? 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
? 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、奇数和偶数
? 自然数按能否被2 整除的特征可分为奇数和偶数。
① 能被2整除的数叫做偶数。0也是偶数。
② 不能被2整除的数叫做奇数。
? 奇数和偶数的运算性质:
① 相邻两个自然数之和是奇数,之积是偶数。
② 奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,
奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
4、整除的特征
? 个位上是0、2、4、6、8的数,都能被2整除。
? 个位上是0或5的数,都能被5整除。
? 一个数的各位上的数的和能被3整除,这个数就能被3整除。
? 一个数各位数上的和能被9整除,这个数就能被9整除。
? 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
? 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
? 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
5、质数和合数
? 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
? 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
? 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
6、分解质因数
? 质因数
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
? 分解质因数
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
? 公因(约)数
几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。
公因数只有1的两个数,叫做互质数。成互质关系的两个数,有下列几种情况:①和任何自然数互质;
②相邻的两个自然数互质;
③当合数不是质数的倍数时,这个合数和这个质数互质;
④两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
? 公倍数
① 几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。
求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
② 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。 二、性质和规律 (一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的移动引起小数大小的变化
1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍??
2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍??
3、小数点向左移或者向右移位数不够时,要用“0"补足位。 (四)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 (五)分数与除法的关系
1、被除数÷除数= 被除数/除数
2、因为零不能作除数,所以分数的分母不能为零。
3、被除数 相当于分子,除数相当于分母。 三、运算法则 (一)整数四则运算的法则
1、整数加法:
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
加数+加数=和一个加数=和-另一个加数
2、整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3、整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。
一个因数× 一个因数 =积一个因数=积÷另一个因数
4、整数除法:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
5、乘方:
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32 (二)小数四则运算
1、小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
小学数学知识点归纳总结
小学生需要掌握的知识点有哪些?YJBYS小编为大家整理如下!欢迎大家阅读参考!
一、小学生数学法则知识归类
(1)笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(2)笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(3)混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(4)四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;
3、末位不管有几个0都不读。
(5)四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(6)四位数减法也要注意三条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(7)一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
小学数学知识点总结:数的方法
(一)数的读法和写法
1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的'读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
小学数学(分数)知识点总结
1、分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
⑴ 分母相同的分数,分子大的那个分数就大。
⑵ 分子相同的分数,分母小的那个分数就大。
⑶ 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
⑷ 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
⑴ 真分数:分子比分母小的分数叫做真分数。真分数小于1。
⑵ 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
⑶ 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
小学数学知识点总结
(一)数的读法和写法
1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
小学数学最容易丢分的知识点总结
1、 列式计算时,一定要注意除和除以的区别:
a除以b或a被b除列式为:a÷b,
a除b,或用a去除b,列式为:b÷a
2、 边长为4cm的正方形,半径为2cm的圆,它们的面积与周长并不相等,因为单位不同,无法比较!应该表述为:“边长为4cm的正方形的周长与面积的数值相等”。
3、 半圆的周长和圆的周长的一半有区别。
4、 压路机滚动一周前进多少米?是求它的周长。压路机滚动一周压路的面积,就是求滚筒的侧面积。
5、 无盖的水桶,水池,金鱼缸,水槽等求表面积时一定要减少一个底面积。
6、 大数比小数大几分之几的方法:(大数—小数)÷单位“1”的量。
7、 两根同样长的绳子,一根剪去1/2米另一根剪去1/2,剩下的长度无法比较;
8、 0.52÷0.17商是3,余数不是1而是0.01
9、 求××率或百分之几的列式中,最后必须“×100﹪”.
10、 在求总人数、总只数、总棵树……的应用题时,结果不可能是分数和小数
11、改写一个准确数,不要求“四舍五入”取近似值时,一定要把“万”或“亿”后面的数写到小数部分;只有大约或省略 “万”或“亿”位后面的尾数时,才用“四舍五入”求近似值,末尾一定要写“万”或“亿”
备战小升初小学数学知识点总结
小升初考试是学生升初中的重大考试,那么大家备考得如何了呢?下面内容由yjbys小编为大家带来的备战小升初小学数学知识点总结,欢迎大家学习!
1.和差倍问题
和差问题 和倍问题 差倍问题
已知条件 几个数的和与差 几个数的和与倍数 几个数的差与倍数
公式适用范围 已知两个数的和,差,倍数关系
公式 ①(和-差)÷2=较小数
较小数+差=较大数
和-较小数=较大数
②(和+差)÷2=较大数
较大数-差=较小数
和-较大数=较小数
和÷(倍数+1)=小数
小数×倍数=大数
和-小数=大数
差÷(倍数-1)=小数
小数×倍数=大数
小数+差=大数
关键问题 求出同一条件下的
和与差 和与倍数 差与倍数
2.年龄问题的三个基本特征:
①两个人的年龄差是不变的
②两个人的年龄是同时增加或者同时减少的
③两个人的年龄的倍数是发生变化的
3.归一问题的基本特点:
问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;
4.植树问题
基本类型 在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树