初中数学知识点总结

总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料。同时总结是一个词语,可做动词,也可作名词,另外也是一种应用文体。

初中数学知识点总结1

  1、重心的定义:平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。

  2、几种几何图形的重心:

  ⑴ 线段的重心就是线段的中点;

  ⑵ 平行四边形及特殊平行四边形的重心是它的两条对角线的交点;

  ⑶ 三角形的三条中线交于一点,这一点就是三角形的重心;

  ⑷ 任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。

  提示:⑴ 无论几何图形的形状如何,重心都有且只有一个;

  ⑵ 从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。

  3、常见图形重心的性质:

  ⑴ 线段的重心把线段分为两等份;

  ⑵ 平行四边形的重心把对角线分为两等份;

  ⑶ 三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。

  上面对重心知识点的巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的复习学习数学知识。

初中数学知识点总结2

  动点与函数图象问题常见的四种类型:

   1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

  2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

  3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.

  4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.

  图形运动与函数图象问题常见的三种类型:

  1、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  动点问题常见的四种类型:

  1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

  2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.

  3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.

  4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

  总结反思:

   本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.

  解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的.

  解答函数的图象问题一般遵循的步骤:

   1、根据自变量的取值范围对函数进行分段.

  2、求出每段的解析式.

  3、由每段的解析式确定每段图象的形状.

  对于用图象描述分段函数的实际问题,要抓住以下几点:

  1、自变量变化而函数值不变化的图象用水平线段表示.

  2、自变量变化函数值也变化的增减变化情况.

  3、函数图象的最低点和最高点.

初中数学知识点总结3

  1、正数和负数的有关概念

  (1)正数:比0大的数叫做正数;

  负数:比0小的数叫做负数;

  0既不是正数,也不是负数。

  (2)正数和负数表示相反意义的量。

  2、有理数的概念及分类

  3、有关数轴

  (1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

  (2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

  (3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

  (2)相反数:符号不同、绝对值相等的两个数互为相反数。

  若a、b互为相反数,则a+b=0;

  相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

  (3)绝对值最小的数是0;绝对值是本身的数是非负数。

  4、任何数的绝对值是非负数。

  最小的正整数是1,最大的负整数是-1。

  5、利用绝对值比较大小

  两个正数比较:绝对值大的那个数大;

  两个负数比较:先算出它们的绝对值,绝对值大的反而小。

  6、有理数加法

  (1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.

  (2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.

  (3)一个数同零相加,仍得这个数.

  加法的交换律:a+b=b+a

  加法的结合律:(a+b)+c=a+(b+c)

  7、有理数减法:减去一个数,等于加上这个数的相反数。

  8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

  例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”

  9、有理数的乘法

  两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

  第一步:确定积的符号 第二步:绝对值相乘

  10、乘积的符号的确定

  几个有理数相乘,因数都不为 0 时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;

  当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。

  11、倒数:乘积为1的两个数互为倒数,0没有倒数。

  正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)

  倒数是本身的只有1和-1。

初中数学几何知识点总结

标签:学习总结 时间:2018-03-20
【yjbys.com - 学习总结】

  数学几何的空间思维能力是培养出来的,因此相关的知识点需要牢记,下面初中数学几何知识点总结是小编想跟大家分享的,欢迎大家浏览。

  初中数学几何知识点总结

  三角形的知识点

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

初中数学整式运算知识点总结

标签:学习总结 时间:2018-03-07
【yjbys.com - 学习总结】

  整式运算是数学中的拿分题,不算十分的难,下面初中数学整式运算知识点总结是小编为大家带来的,希望对大家有所帮助。

  初中数学整式运算知识点总结

  1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。

  2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  3.整式的加减:有括号的先算括号里面的,然后再合并同类项。

  4.幂的运算:

  5.整式的`乘法:

  1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。

  2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。

  3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  6.整式的除法

  1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

  2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。

  四、因式分解——把一个多项式化成几个整式的积的形式

  1)提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。

初中数学平面直角坐标知识点总结

标签:学习总结 时间:2018-03-07
【yjbys.com - 学习总结】

  平面直角坐标的学习对于往后的数学学习起着关键的作用,下面初中数学平面直角坐标知识点总结是小编为大家带来的,希望对大家有所帮助。

  初中数学平面直角坐标知识点总结

  一、基本概念

  1、有序数对:我们把这种有顺序的两个数a与b组成的数队,叫做有序数对。

  2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,习惯上取向右为正方向

  竖直的数轴称为y轴或纵轴,取向上方向为正方向

  两坐标轴的交战为平面直角坐标系的原点

  3、象限:坐标轴上的点不属于任何象限

  第一象限:x>0,y>0

  第二象限:x0

  第三象限:x0,y

  纵坐标轴上的点:(0,y)

  4、距离问题:点(x,y)距x轴的距离为y的绝对值

  距y轴的距离为x的绝对值

  坐标轴上两点间距离:点A(x1,0)点B(x2,0),则AB距离为x1-x2的绝对值

  点A(0,y1)点B(0,y2),则AB距离为y1-y2的绝对值

  5、绝对值相等的代数问题:a与b的绝对值相等,可推出

  1)a=b或者

  2)a=-b

  6、角平分线问题

  若点(x,y)在一、三象限角平分线上,则x=y

  若点(x,y)在二、四象限角平分线上,则x=-y

  7、平移:

  在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a,y)

初中数学函数知识点总结

标签:学习总结 时间:2018-03-07
【yjbys.com - 学习总结】

  初中数学函数是常考的难点,那么初中数学函数知识点又应该怎么总结呢?下面初中数学函数知识点总结是小编为大家带来的,希望对大家有所帮助。

  初中数学函数知识点总结

  一、函数

  (1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。

  (2)本质:一一对应关系或多一对应关系。

  有序实数对 平面直角坐标系上的点

  (3)表示方法:解析法、列表法、图象法。

  (4)自变量取值范围:

  对于实际问题,自变量取值必须使实际问题有意义;

  对于纯数学问题,自变量取值必须保证函数关系式有意义:

  ①分式中,分母≠0;

  ②二次根式中,被开方数≥0;

  ③整式中,自变量取全体实数;

  ④混合运算式中,自变量取各解集的公共部份。

  二、正比例函数与反比例函数

  两函数的异同点

  二、一次函数(图象为直线)

  (1)定义式:y=kx+b (k、b为常数,k≠0);自变量取全体实数。

  (2)性质:

  ①k>0,过第一、三象限,y随x的增大而增大;

  k<0,过第二、四象限,y随x的.增大而减小。

  ②b=0,图象过(0,0);

  b>0,图象与y轴的交点(0,b)在x轴上方;

  b<0,图象与y轴的交点(0,b)在x轴下方。

初中数学圆的知识点总结

标签:学习总结 时间:2018-03-06
【yjbys.com - 学习总结】

  初中数学中,圆的知识点是考试的必考点,那么初中数学圆的知识点有什么是需要重点把握的呢?下面初中数学圆的知识点总结是小编为大家带来的,希望对大家有所帮助。

  初中数学圆的知识点总结

  1.不在同一直线上的三点确定一个圆。

  2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的.另一条弧

  推论2 圆的两条平行弦所夹的弧相等

  3.圆是以圆心为对称中心的中心对称图形

  4.圆是定点的距离等于定长的点的集合

  5.圆的内部可以看作是圆心的距离小于半径的点的集合

  6.圆的外部可以看作是圆心的距离大于半径的点的集合

  7.同圆或等圆的半径相等

  8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

  10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

  12.①直线L和⊙O相交 d

  ②直线L和⊙O相切 d=r

  ③直线L和⊙O相离 d>r

初中数学知识点归纳总结

标签:学习总结 时间:2018-03-05
【yjbys.com - 学习总结】

  数学的知识点非常多,那么哪些是重点的知识点呢?下面yjbys小编为大家精心整理的初中数学知识点归纳总结,方便大家学习!

  基本知识

  ㈠、数与代数A、数与式:

  1、有理数

  有理数:

  ①整数→正整数/0/负整数

  ②分数→正分数/负分数

  数轴:

  ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:

  ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

初中数学一次函数知识点总结

标签:学习总结 时间:2017-12-02
【yjbys.com - 学习总结】

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k≠0)

  二、一次函数的性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)

  2.当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1.作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的`图像总是过原点。

  3.k,b与函数图像所在象限:

  当k>0时,直线必通过一、三象限,y随x的增大而增大;

  当k<0时,直线必通过二、四象限,y随x的增大而减小。

  当b>0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b<0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

初中数学二次函数知识点总结

标签:学习总结 时间:2017-11-26
【yjbys.com - 学习总结】

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

初中数学知识点中考总复习总结归纳

标签:中考 时间:2017-10-10
【yjbys.com - 中考】

  1.旋转:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。

  2.旋转的性质:旋转前后图形的大小和形状没有改变;对应线段的长度、对应角的大小相等;对应点到旋转中心的'距离相等;对应点与旋转中心所连线段的夹角都等于旋转角。

  3.中心对称图形与中心对称:

  中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

  中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

  4.中心对称的性质:

  关于中心对称的两个图形是全等形;

  关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;

  关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

  5.平面直角系中关于原点对称的点的坐标:两个点关于原点对称,它们的横纵坐标分别互为相反数,

  即p(x,y)关于原点的对称点为p(-x,-y)。

初中数学知识点之基础知识点总结

标签:学习总结 时间:2017-07-16
【yjbys.com - 学习总结】

  一、数与代数A、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数

  数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的'绝对值。③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。