初二数学知识点总结

总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料。同时总结是一个词语,可做动词,也可作名词,另外也是一种应用文体。对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性的结论。

初二数学知识点总结1

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

  2、正方形的性质

  (1)具有平行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是平行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

初二数学知识点总结2

  第十六章 分式

  一、定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。

  二、分式基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

  三、分式计算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

  分式除法法则:分式除以分式,把除式的分子、分母颠倒置后,与被除式相乘。

  分式乘方:分式乘方要把分子、分母分别乘方。

  四、整数指数幂:(1) (2)较小数的科学记数法;

  五、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。(这个解是增根,原方程无解)。

  第十七章 反比例函数

  一、形如y= (k为常数,k≠0)的函数称为反比例函数;

  二、反比例函数的图像属于双曲线;

  三、性质:当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

  当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

  第十八章 勾股定理

  一、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么

  二、勾股定理逆定理:如果三角形三边长a,b,c满足 ,那么这个三角形是直角三角形。

  三、经过证明被确认正确的命题叫做定理。

  四、我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

  第十九章 四边形

  一、平行四边形:

  1、定义:有两组对边分别平行的四边形叫做平行四边形。

  2、性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。

  3、判定:(1)两组对边分别相等的四边形是平行四边形;

  (2)两组对角分别相等的四边形是平行四边形;

  (3)对角线互相平分的四边形是平行四边形;

  (4)一组对边平行且相等的四边形是平行四边形。

  (5)有两组对边分别平行的四边形叫做平行四边形。(定义)

  4、三角形的中位线平行于三角形的第三边,且等于第三边的一半。

  二、矩形:

  1、定义:有一个角是直角的平行四边形叫做矩形。

  2、性质:矩形的四个角都是直角;矩形的对角线平分且相等。

  3、判定:(1)有一个角是直角的平行四边形叫做矩形。(定义)

  (2)对角线相等的平行四边形是矩形。

  (3)有三个角是直角的四边形是矩形。

  4、直角三角形斜边上的中线等于斜边的一半。

  三、菱形:

  1、定义:一组邻边相等的平行四边形是菱形

  2、性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  3、判定:(1)一组邻边相等的平行四边形是菱形。(定义)

  (2)对角线互相垂直的平行四边形是菱形。

  (3)四条边相等的四边形是菱形。

  4、S菱形=底×高 S菱形= ab(a、b为两条对角线)

  四、正方形:

  1、定义:有一组邻边相等的矩形是正方形。或有一个角是直角的菱形是正方形。

  2、性质:四条边都相等,四个角都是直角;正方形既是矩形,又是菱形。

  3、判定:(1)邻边相等的矩形是正方形。

  (2)有一个角是直角的菱形是正方形。

  五、梯形:

  1、定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

  2、等腰梯形定义:两腰相等的梯形叫做等腰梯形。

  性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

  判定:同一底上两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形。

  3、梯形的中位线分别平行于上、下两底,且等于上、下两底和的一半。

  六、重心:

  1、线段的重心就是线段的中点。

  2、平行四边形的重心是它的两条对角线的交点。

  3、三角形的三条中线交于疑点,这一点就是三角形的重心。

  七、数学活动(教材115页):

  1、折纸多60°、30°、15°的角证明方法(重点30°角)

  2、宽和长的比是 (约为0.618)的矩形叫做黄金矩形。

  第二十章 数据的分析

  一、加权平均数:计算公式(教材125页。)

  二、中位数:将一组数据按照由小到大(大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

  三、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。

  四、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

  五、方差:

  1、计算公式: ( 表示 的平均数)

  2、性质:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

  六、数据的收集与整理的步骤:

  1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告

初二数学知识点总结3

  一、实数的概念及分类

  1、实数的分类

  一是分类是:正数、负数、0;

  另一种分类是:有理数、无理数

  将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数

  2、无理数:无限不循环小数叫做无理数。

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  (1)开方开不尽的数,如等;

  (2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

  (3)有特定结构的数,如0.1010010001…等;

  (4)某些三角函数值,如sin60o等

  二、实数的倒数、相反数和绝对值

  1、相反数

  实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

  2、绝对值

  在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

  3、倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

  4、数轴

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

初二下册数学知识点总结归纳

标签:初中辅导 时间:2018-03-07
【yjbys.com - 初中辅导】

  数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.下面是小编整理的数学知识点总结归纳,欢迎大家参考!

  第一章分式

  1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2分式的运算

  (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

  3整数指数幂的加减乘除法

  4分式方程及其解法

  第二章反比例函数

  1反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2反比例函数在实际问题中的应用

  第三章勾股定理

  1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

  2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形

  第四章四边形

  1平行四边形

  性质:对边相等;对角相等;对角线互相平分。

  判定:两组对边分别相等的'四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

初二下册每一章数学知识点总结

标签:初中辅导 时间:2018-03-07
【yjbys.com - 初中辅导】

  数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.下面是小编整理的关于每一章数学知识点总结,欢迎大家参考!

  1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。

  2.其他形式 xy=k (k为常数,k≠0)都是。

  3.图像:反比例函数的图像属于双曲线。

  反比例函数的图象既是轴对称图形又是中心对称图形。

  有两条对称轴:直线y=x和 y=-x。 对称中心是:原点

  3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。

  当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

  4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴

  所作的垂线段与两坐标轴围成的矩形的面积。

  第十八章 勾股定理

  1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

  2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

  3.经过证明被确认正确的命题叫做定理。

  我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

初二数学一次函数知识点总结

标签:初中辅导 时间:2018-03-06
【yjbys.com - 初中辅导】

  数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.下面是小编整理的关于数学一次函数知识点总结,欢迎大家参考!

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)

  二、一次函数的性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)

  2.当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1.作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

  3.k,b与函数图像所在象限:

  当k>0时,直线必通过一、三象限,y随x的增大而增大;

  当k<0时,直线必通过二、四象限,y随x的`增大而减小。

  当b>0时,直线必通过一、二象限;

  当b=0时,直线通过原点

初二数学下册知识点总结

标签:初中辅导 时间:2018-03-06
【yjbys.com - 初中辅导】

  代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。下面是小编整理的关于初二数学下册知识点总结,欢迎大家参考!

  函数及其相关概念

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的.值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

初二数学立方根平方根知识点总结归纳

标签:初中辅导 时间:2018-03-05
【yjbys.com - 初中辅导】

  数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.下面是小编整理的关于数学立方根平方根知识点总结归纳,欢迎大家参考!

  立方根知识点总结

  知识要领:如果一个数x的立方等于a,即x的三次方等于a(x^3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根。

  立方根

  读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a等于所有数,包括0)如果被开方数还有指数,那么这个指数(必须是三能约去的)还可以和三次根号约去。

  求一个数a的立方根的运算叫做开立方。

  立方根的性质:

  ⑴正数的立方根是正数.⑵负数的立方根是负数.⑶0的立方根是0.一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(cube root,也叫做三次方根)。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。

  立方和开立方运算,互为逆运算。

  互为相反数的两个数的立方根也是互为相反数。

  负数不能开平方,但能开立方。

  立方根如何与其他数作比较?  ⑴做这两个数的立方

  ⑵作差

  ⑶比较被开方数(如三次根号3大于三次根号2)

  任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个.

初二数学上册知识点总结

标签:初中辅导 时间:2017-07-17
【yjbys.com - 初中辅导】

  数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。以下是小编整理的关于初二数学上册知识点总结,希望大家认真阅读!

  第十一章 三角形

  一、知识结构图

  边

  与三角形有关的线段 高

  中线

  角平分线

  三角形的内角和 多边形的内角和

  三角形的外角和 多边形的外角和

  二、知识定义

  三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  角平分线:三角形的.一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  多边形的内角:多边形相邻两边组成的角叫做它的内角。

  多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

初二数学一次函数知识点总结

标签:学习总结 时间:2017-07-10
【yjbys.com - 学习总结】

  知识点1 一次函数和正比例函数的概念

  若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.

  知识点2 函数的图象

  由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点.

  画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.

  知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质

  (1)k的正负决定直线的倾斜方向;

  ①k>0时,y的值随x值的增大而增大;

  ②k﹤O时,y的值随x值的增大而减小.

  (2)|k|大小决定直线的倾斜程度,即|k|越大

  ①当b>0时,直线与y轴交于正半轴上;

  ②当b<0时,直线与y轴交于负半轴上;

  ③当b=0时,直线经过原点,是正比例函数.

  (4)由于k,b的符号不同,直线所经过的象限也不同;

  ①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);

  ②如图所示,当k>0,b

  ③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);

  ④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).