基于USB总线的高速数据采集系统

时间:2023-03-26 19:34:10 理工毕业论文 我要投稿
  • 相关推荐

基于USB总线的高速数据采集系统

摘要:介绍了一种基于USB总线的高速数据采集系统,讨论了USB控制器EZ-USB FX2?CY7C68013?的性能及传输方式?给出了该系统的硬件和基于GPIF主控方式实现数据传输的软件设计方法。

1 引言

现代工业生产和科学研究对数据采集的要求日益提高。目前比较通用的是在PC或工控机内安装数据采集卡(如A/D卡及422、485卡)。但这些数据采集设备存在以下缺陷:安装麻烦、价格昂贵、受计算机插槽数量、地址、中断资源的限制,可扩展性差,同时在一些电磁干扰性强的测试现场,可能无法专门对其作电磁屏蔽,从而导致采集的数据失真。

传统的外设与主机的通讯接口一般是基于PCI总线、ISA总线或者是RS-232C串行总线。PCI总线虽然具有较高的传输速度(132Mbps),并支持“即插即用”功能,但其缺点是插拔麻烦,且扩展槽有限(一般为5~6个),ISA总线显然存在同样的问题。RS-232C串行总线虽然连结简单,但其传输速度慢(56kbps),且主机的串口数目也有限。

通用串行总线(Universal Serial Bus,简称USB)是1995年康柏、微软、IBM、DEC等公司为了解决传统总线的不足,而推出的一种新型串行通信标准。该总线接口具有安装方便、高带宽、易扩展等优点,已经逐渐成为现代数据传输的发展趋势。基于USB的数据采集系统充分利用USB总线的上述优点,有效地解决了传统数据采集系统的缺陷。USB的规范能针对不同的性能价格比要求提供不同的选择,以满足不同的系统和部件及相应不同的功能,从而给使用带来极大方便。

2 系统介绍

2.1 数据采集系统的结构与功能

常见的数据采集系统的硬件总体结构如图1所示。其中数据采集接口卡是硬件部分的核心,它包括A/D转换器、微控制器、USB通信接口等。

在高速数据采集系统中?由于现场输入信号是高频模拟信号,因而信号的变化范围都比较大?如果采用单一的增益放大?那么放大以后的信号幅值有可能超过A/D转换的量程?所以必须根据信号的变化相应地调整放大器的增益。在自动化程度较高的系统中?希望能够在程序中用软件控制放大器的增益?AD8321正是这样一种具有增益可编程功能的芯片。AD8321是美国AD公司生产的一种增益可编程线性驱动器。它具有频带宽、噪声低、增益可编程且易于与单片机进行串行通信等优点,十分适合在数据采集系统中做前置放大。

经过调理后的信号可送入模/数变换器(ADC)进行A/D变换。笔者选用的ADC是TLC5540,它是一种高速8位模拟数字转换器,能以高达每秒40M的采样速率进行转换,由于采用半闪速结构和CMOS工艺制造,因此功耗和成本很低。其75MHz(典型值)的模拟输入带宽使该器件成为欠采样应用的良好选择。该器件带有内部电阻,可用于从5V电源产生2V满度的基准电压,以减少外部元件数。数字输出置于高阻方式。它仅需要5V电源工作,可由USB总线供电。

由于数据采集接口卡是硬件部分的核心,因此应选择能适用USB协议的合适芯片。EZ-USB FX2是一种USB2.0集成微控制器。它的内部集成了USB2.0收发器、串行接口引擎(SIE)、增强的8051微控制器和一个可编程的串行接口。其主要特性如下:

●带有加强的8051内核性能,可达到标准8051的5~10倍,且与标准8051的指令完全兼容;

●集成度高,芯片内部集成有微处理器、RAM、SIE(串行接口引擎)等多个功能模块,从而减少了多个芯片接口部分需要时序配合的麻烦;

●采用软配置,在外设未通过USB接口接到PC机之前,外设上的固件存储在PC上;而一旦外设连接到PC机上,PC则先询问外设是“谁”(即读设备描述符),然后将该外设的固件下载到芯片的RAM中,这个过程叫做再枚举。这样,在开发过程中,当固件需要修改时,可以先在PC机上修改好,然后再下载到芯片中;

●具有易用的软件开发工具,该芯片开发系统的驱动程序和固件的开发和调试相互独立,可加快开发的速度。

图2 USB接口示意图

2.2 方案选择

FX2有三种可用的接口模式:端口、GPIF主控和从FIFO。

在“端口”模式下,所有I/O引脚都可作为8051的通用I/O口。

在“从FIFO”模式下,外部逻辑或外部处理器直接与FX2端点FIFO相连。在这种模式下,GPIF不被激活,因为外部逻辑可直接控制FIFO。这种模式下,外部主控端既可以是异步方式,也可以是同步方式,并可以为FX2接口提供自己的独立时钟。

“GPIF主控”接口模式使用PORTB和PORTD构成通向四个FX2端点FIFO( EP2? EP4? EP6和EP8)的16位数据接口。GPIF作为内部的主控制器与FIFO直接相连,并产生用户可编程的控制信号与外部接口进行通信。同时,GPIF还可以通过RDY引脚采样外部信号并等待外部事件。由于GPIF的运行速度比FIFO快得多,因此其时序信号具有很好的编程分辨率。另外,GPIF既可以使用内部时钟,也可以使用外部时钟。故此,笔者选择了GPIF模式。

高速数据采集卡的设计存在两大难点:一是模拟信号的A/D高速转换;二是变换后数据的高速存储及提取。对于第一个问题,由于制造ADC的技术不断进步,这个问题已经得到解决。而对于第二个问题,一般的数据采集系统是将A/D转换后的数据先存储在外部数据存储器中,然后再对其进行处理。对于高速数据采集而言,这种方式将严重影响采集速度,且存储值也会受到很大限制。而改进方案是将A/D转换后的数据直接送至计算机内存,这样,采集速度将大大提高,而且可存储大量数据,以便于下一步的处理。

为了解决同步问题,可以由CPLD产生同步时钟信号提供给ADC和FX2。在本数据采集系统的设计中,CPLD同时还可用于产生不同的控制信号,以便对采样进行实时控制。CPLD是复杂可编程逻辑器件,它包括可编程逻辑宏单元、可编程I/O单元和可编程内部连线。由于CPLD的内部资源丰富,因而可广泛应用在数据采集、自动控制、通讯等各个领域。在本系统的设计中,笔者选用的

【基于USB总线的高速数据采集系统】相关文章:

高性能数据采集系统芯片LM12H458及其应用05-28

局域网数据库环境下数据采集及处理05-08

基于PLC的断路器型式试验系统设计03-10

基于web的异地并行设计与制造系统研究06-02

基于J2EE的远动系统Web实时曲线的研究05-11

基于电话网络的热网远程控制系统设计05-11

高速公路机电维护信息管理系统的原则论文06-28

对于网技术在高速公路机电系统的应用前景论文04-21

探讨基于多种通信方式并存的配网自动化通信系统06-01

分析基于三维扫描的特种设备管理系统设计论文05-26