基于流水线技术的并行高效FIR滤波器设计

时间:2020-10-06 19:37:13 理工毕业论文 我要投稿

基于流水线技术的并行高效FIR滤波器设计

摘要:基于流水线技术,利用FPGA进行并行可重复配置高精度的FIR滤波器设计。使用VHDL可以很方便地改变滤波器的系数和阶数。在DSP中采用这种FIR滤波器的设计方法可以充分发挥FPGA的优势。

数字滤波器可以滤除多余的噪声,扩展信号频带,完成信号预调,改变信号的特定频谱分量,从而得到预期的结果。数字滤波器在DVB、无线通信等数字信号处理中有着广泛的应用。在数字信号处理中,传统滤波器通过高速乘法累加器实现,这种方法在下一个采样周期到来期间,只能进行有限操作,从而限制了带宽。现实中的信号都是以一定的序列进入处理器的,因此处理器在一个时钟周期内只能处理有限的位数,不能完全并行处理。基于并行流水线结构的FIR滤波器可以使笔者设计的64阶或者128阶滤波器与16阶滤波器的速度一样快,其显著特别是在算法的每一个阶段存取数据。FPGA结构使得以采样速率处理数字信号成为常数乘法器的理想载体,提高了整个系统的性能。由于设计要求的差异,如字长、各级输出的保留精度等不同,在整个设计过程中,各个环节也有所不同,这就需要根据不同的要求对数据进行不同的`处理,如截断、扩展等,从而设计出既满足设计需要,又节省FPGA资源的电路。

图1 并行滤波器结构

1 FIR并行滤波器结构

数字滤波器主要通过乘法器、加法器和移位寄存器实现。串行处理方式在阶数较大时,处理速度较慢。而现代数字信号处理要求能够快速、实时处理数据,并行处理数据能够提高信号处理能力,其结构如图1所示。

图2 查找表相乘和累加

从上面的算法可以看出,处理数据的采样时钟对每一个抽头来说都是并行的,并且加法器和移位寄存器采用级联方式,完成了累加器的功能,综合了加法器和移位寄存器的优点,而且这种算法的各级结构相同,方便扩展,实现了任意阶数的滤波器。算法中,真正点用系统资源的是乘法器。如果将系数量化成二进制,就能采用移位寄存器和加法器实现乘法功能。对于一个特定的滤波器,由于它有固定的系数,乘法功能就是一个长数乘法器。下面将讨论乘法器的设计问题。

2 FIR并行滤波器的乘法器设计

在并行滤波器的设计中,每一个乘法器的一端输入数据,另一端为固定常数。对于常数乘法器,可以预先将常数的部分乘积结构存储起来,然后通过查表的方式实现两个数据的乘积。以16位输入、常数为14位的乘法器为例,给出其实现结构如图2所示。

对于无符号数来说,这是一种理想结构。但是在实际使用中,通常使用有符号数且常用补码的形式,因此需要对这种结构进行改进。一种改进方法是将输入的数据分开,即最高的几位作为有符号数处理,其它作为无符号数处理。第二种改进方法是将符号数经过补码/原码变换器变换成原码,然后,将原码作为无符号数处理,通过有符号数的符号位来控制加法器的加减。第三种改进方法是一种优化方法,即要用三个二进制补码变换器,处理输入的有符号数和滤波器的系数,这样可以避免使用有符号数的乘法和加法运算。具体的乘法累加器运算过程及结果如图3所示。其中,对应乘数高位和低位部分积p1(n)和p2(2)可以分别先垂直相加后水平相加,或者先水平相加后垂直相加,最后的结果是一样的。若采用后种方法,由于FIR滤波器的h(n)均为常数,得到部分积的矢量乘法运算就演变成了查表法,其中,S1(n)表示S(n)的最低有效,p1表示最低有效位部分积之和。

图4 有符号数查找表优化结构

同理,得p2,将p2左移一位与p1相加,便得到最后结果。这种查表法就是采用流水线技术进行FIR滤波器算法分解的基础,当字长增加时,相应得到p3、p4等。并相应移位相加即可。